Презентация на тему "медицинская робототехника ". Научная робототехника Робот на раздаче

Презентация на тему
Презентация на тему "медицинская робототехника ". Научная робототехника Робот на раздаче

В начале 2018 года стало известно об использовании роботов в качестве медсестер. Проект анонсирован в больнице города Нагоя (Япония), в котором находится большой музей, посвященный робототехнике.

В феврале 2018 года в Университетской клинике Нагои (Nagoya University Hospital) запустит четырех роботов Toyota , которые станут помощниками медицинскому персоналу. В частности, на это автоматизированное оборудование возложат функции раздачи медикаментов больным в палатах, доставку анализов и т. п. Роботы смогут передвигаться как по этажу, так и между различными отделениями, которые располагаются на разных этажах.

Каждый робот имеет высоту 125 см, ширину 50 см и глубину 63 см. Максимальная скорость передвижения составляет 3,6 км/ч, максимальный вес перевозимого груза - 30 кг.

Как отмечает издание Engadget, по сути, роботы представляют собой портативные холодильники объемом 90 литров, которые оснащены радарами и камерами для передвижения по медицинскому учреждению. Роботы объезжают людей, а в случае столкновения приносят извинения и вежливо просят пройти. Работники клиники могут вызывать роботов к себе и назначать пункты следования при помощи планшетных компьютеров.


Роботы разработаны совместными усилиями специалистов Университетской клиники Нагои и подразделения Toyota Industries (производит автозапчасти и электронику). Пробный запуск устройств будет проходить в ночную смену - в период с 17:00 до 8:00, когда меньше людей ходят по этажам. В случае успешного тестирования роботы могут быть развернуты в других больницах.

Использование роботов в домах престарелых в Японии

В ноябре 2017 года стало известно о тестировании роботов в нескольких тысячах домов престарелых в Японии . Искусственный интеллект и механические ассистенты помогают персоналу ухаживать за людьми в возрасте и заменяют последним собеседников.

По прогнозам японского правительства, объем рынка роботов, заменяющих медицинских работников для ухода за больными, к 2020 году достигнет 54,3 млрд иен (около $480 млн), увеличившись втрое по сравнению с показателем 2015-го. Расходы здесь гораздо ниже по сравнению с роботами, применяемыми на предприятиях и в сфере услуг.

Одной из причин такого отставания спроса на автоматизированное оборудование, присматривающего за здоровьем людей, является дороговизна. Несмотря на достаточно высокий уровень жизни в Японии, далеко не все пенсионеры могут позволить себе покупку робота .

В Японии предусмотрены субсидии для разработчиков роботов. Дополнительные льготы предоставляются при поставках устройств в лечебно-реабилитационные центры для престарелых и инвалидов. Около 5 тыс. таких учреждений к ноябрю 2017 года задействуют роботов.

Они используются для общения с пациентами, проведения лечебной физкультуры, обхода больничных коридоров для мониторинга за экстренными ситуациями, а робот-пес Aibo от Sony вовсе заменяет домашнего питомца.

В домах престарелых все сильнее распространяются системы, помогающие медперсоналу ухаживать за пожилыми людьми: например, поднимать и перемещать парализованных по этажу.

Роботы еще не смогут полностью заменить людей в социальных учреждениях, однако позволяют персоналу сосредоточиться на общении и других задачах, требующих большего вовлечения, отдав бытовые дела на попечение гаджетов. Кроме того, как показало общенациональное исследование, примерно треть жителей Японии, пользующихся роботами, в итоге стали более активными и независимыми, отмечает издание The Economist.

Прогноз IDC по использованию роботов в медицине

К 2020 году больницы станут активнее использовать роботов. Планируется как клиническое применение, так и автоматизация с их помощью несложных задач, сообщает издание Healthcare IT News со ссылкой на проведенное в 2017 году исследование IDC .


Опрос IDC среди лечебных учреждений на 200 и более койко-мест позволил оценить планы внедрения роботов и дронов . Почти треть респондентов заявили, что уже используют у себя роботов. Такая практика станет обычным явлением для учреждений здравоохранения, как только в больницах и клиниках поймут, каким образом внедрение роботов способно помочь автоматизировать процессы, снизить издержки и улучшить качество оказания медицинских услуг. По оценкам IDC, повсеместное распространение роботов в больницах США произойдет в период от одного года до трех лет.

Интересно, что в отличие от роботов, которые уже успели проникнуть в сферу здравоохранения, беспилотные летательные аппараты (БПЛА) пока не используются лечебными учреждениями. Во всяком случае, такого опыта не оказалось ни у одной из больниц, участвовавших в опросе IDC.

Тем не менее, аналитики убеждены, что в следующие три-пять лет дроны также найдут применение в здравоохранении.

То, как беспилотники могут пригодиться для оказания медицинской помощи, в июне 2017 года стало известно из опыта шведских ученых. С помощью экспериментальных полетов БПЛА специалисты продемонстрировали, что дроны способны на 17 минут быстрее доставлять в нужную точку автоматический внешний дефибриллятор для помощи пациенту, нежели это происходит в случае с обычной машиной скорой помощи.

Опубликовано: Архипов М.В., Головин В.Ф., Журавлев В.В. Мехатроника, автоматизация, управление, № 8, М., 2011, с. 42 – 50

Обзор состояния робототехники в восстановительной медицине

1. Классификация медицинских роботов

Чтобы систематизировать известные и возможные робототехнические системы (РТС) в медицине предложен ряд классификаций . В качестве признаков классификации использованы следующие: инвазивность процедуры, безопасность, мобильность, эргономичность, контроль как управление или диагностика. Один из вариантов классификации, учитывающий последние достижения в медицинской робототехнике приведен на рис.1 . Основные три класса – это роботы для восстановительной медицины, роботы для жизнеобеспечения и роботы для хирургии, терапии и диагностики. Они представляют собой основные области медицинской робототехники, хотя эти классы и их подклассы не являются независимыми по указанным выше признакам. Далее в разделах 3 – 5 рассматриваются представители обозначенных в классификации подклассов восстановительной медицины.

Рис.1

2. Концепция разработки и внедрения роботов в восстановительной медицине для здоровых людей

Восстановительная медицина представляет систему медицинской деятельности, направленной на диагностику функциональных резервов, сохранение и восстановление здоровья человека посредством оздоровления и медицинской реабилитации. Под оздоровлением следует понимать комплекс профилактических мероприятий, направленных на восстановление сниженных функциональных резервов и адаптивных возможностей организма у практически здоровых лиц . Особенную роль профилактической медицины отмечал Нобелевский лауреат И.П. Павлов (рис.2). По его словам: “Профилактическая медицина достигает своих социальных целей только в случае перехода от медицины патологии к медицине здоровья здоровых”.

Рис.2

Понятие восстановительная медицина отличается по существу от понятия медицинская реабилитация, которая представляет комплекс диагностических и лечебно-профилактических мероприятий, направленных на восстановление или компенсацию нарушенных функций организма человека и трудоспособности у больных лиц и инвалидов.

Реабилитация – это закрепление лечебного эффекта в процессе выздоровления больного после болезни. В отличие от реабилитации, обеспечивающей восстановление здоровья у больного человека, восстановительная медицина направлена на воспроизводство утраченных резервов здоровья. Лечебно-оздоровительный арсенал восстановительной медицины обеспечивает человеку социально-творческую активность в своей профессии, то есть работоспособность в тех условиях, в которых протекает его профессиональная деятельность. Реабилитация по преимуществу сосредоточена на органной патологии, и соответственно её критериальный аппарат оценивает степень возвращения к норме. Методический инструментарий восстановительной медицины перенацеливается с поиска симптомов болезни на оценку резервных функциональных возможностей организма, именно к тем нагрузкам, условиям труда, в которых работает человек.

В основу концепции развития здравоохранения и медицинской науки в Российской Федерации на период до 2010 г. положена здоровьецентрическая модель системы здравоохранения, разработанная РНЦВМиК под руководством академика А.Н.Разумова (рис.3). Суть модели состоит в акценте на сохранение здоровья здорового человека а, следовательно, на восстановительную медицину .

Рис.3

В дальнейшем большинство исследований этой монографии будет связано с контингентом не только травмированных в военных действиях, на производстве, в спорте людей, больных детским церебральным параличом, постинсультных больных, но и людей здоровых, устающих от физической и умственной деятельности, снижающих свою работоспособность. Например, преподаватели и студенты университетов. Уместно сказать здесь о развивающейся в настоящее время системе интенсивного информатизированного обучения, которая для повышения эффективности обучения предполагает концентрацию усилий как обучающихся, так и преподавателей без ущерба их здоровья. Для них необходимой является рассматриваемая в монографии восстановительная медицина.

Восстановительная медицина включает ряд терапий, в том числе, немедикоментозные, одним из видов которых является механотерапия. Среди множества известных средств механотерапии наибольшими возможностями обладает робототехника.

О необходимости применения аппаратных средств оздоровительного массажа именно для здоровых людей писал в своей диссертации “Материалы к вопросу о действии массажа на здоровых людей” в 1882 г русский учёный Н.В. Заблудовский (рис.4). “Нельзя ли воспользоваться усовершенствованиями механики для устройства таких машин, которые заменили бы действия рук, или не будет ли даже действие машин предпочтительнее действия рук? Стоило бы изобрести машину, силу которой можно было бы в каждый момент определять в цифрах и вместо работы массёра, зависящей от субъективного мышечного чувства, иметь дело с работой, выраженной в цифрах. Другими словами – вместо того, чтобы количество целебного средства взять на глазок, взвешивать его на точных весах”.

Рис.4

В те времена это было фантастикой, и учёный лишь мечтал о возможности дозирования воздействий на аппаратных средствах будущего. В настоящее время мечты великого предсказателя могут быть реализованы при обращении к развитой адаптивной интеллектуальной робототехнике. Проблема для медицины, в первую очередь, состоит в развитии концепции Н.В. Заблудовского о новом подходе к физической культуре человека с участием не только волевых и пассивных движений, но и массажа. Массаж может иметь как функцию релаксации, так и мобилизации. В оптимальном объединении этих функций физическая культура сможет в большей степени способствовать сохранению и повышению запасов здоровья и повышению работоспособности в физическом и умственном труде.

Поэтому существом концепции разработки и внедрения роботов в ВМ для здоровых людей является использование адаптивных и интеллектуальных роботов в сочетании с другими видами терапий: аромо-, мело-, психотерапией для сохранения повышения запасов здоровья людей, повышения их работоспособности.

Конечно, робототехническая система является автоматизированным средством, лишь временно работая автоматически, подчиняясь человеку на уровне принятия сложных решений и являясь разумным, а не только физическим помощником.

В соответствии с классификацией, предложенной выше, проведен обзор состояния робототехники для восстановительной медицины по трём направлениям: манипуляции на суставах или движения конечностей в суставах; манипуляции на мягких тканях, т.е. разнообразный массаж; активные и биоуправляемые протезы.

3. Роботы для выполнения движений конечностей в суставах

Движения конечностей в суставах руками врача широко используются в спортивной, восстановительной медицине, в лечении и обучении пациентов с последствиями инсульта, детского церебрального паралича. Пассивные и активные движения конечностей в суставах часто выполняются вместе с массажем, в том числе, и в оздоровительных целях. Механотерапия заменяет руки врача руками манипулятора. Одни из первых работ, в которых был предложен манипуляционный шестиприводной робот для массажа и движения конечностей в суставах появились в 1997г. . Позднее появляются одноприводные роботы американской фирмы ”Biodex ”, швейцарской фирмы “Con -Trex ”и четырёхприводной робот швейцарской фирмы “Lokomat ” .

Робот швейцарской фирмы “Lokomat” является наиболее ярким представителем подкласса реабилитационных роботов для выполнения движений конечностей в бедренных, коленных и голеностопных суставах. Существует концепция нейропластичности, которая предполагает "постановку задачи специфического обучения" и заключается в том, что с помощью многократно повторяющихся тренировок можно улучшить повседневную двигательную активность у пациентов с неврологическими нарушениями. Роботизированная терапия на комплексе Lokomat отвечает вышеописанным требованиям и дает возможность проведения интенсивной локомоторной терапии с обратной связью. Общий вид комплекса представлен на рис. 5.

Рис. 5

Lokomat состоит из четырёх приводов для навязывания движений ходьбы и системы разгрузки веса пациента и беговой дорожки.

Пациенты, находящиеся в инвалидном кресле, могут быть без особого
труда переведены на полотно беговой дорожки и закреплены с помощью специальных фиксаторов. Управляемые компьютером приводы синхронизированы со скоростью беговой дорожки. Они задают ногам пациента траекторию движения, которая формирует ходьбу, близкую к естественной.

Усиленная мотивация пациента осуществляется за счет управления нагрузкой с помощью биологической обратной связи при выводе текущего состояния на монитор (рис. 6).

Рис. 6

Для задач ортопедии (взрослая и детская), спортивной медицины, производственной реабилитации, профилактики и лечения остеоартритов известен робот американской фирмы “Biodex ”. Принцип действия основан на электронной динамометрии. Система обеспечивает быструю и точную диагностику, лечение и документирование нарушений, являющихся причиной функциональных расстройств мышц и суставов. Система позволяет проводить мобилизацию суставов в направлении сгибание / разгибание, отведение / приведение и ротация, что необходимо для полноценного восстановления их утраченных функций.

В комплектацию входит набор приспособлений для работы с тазобедренным, коленным, плечевым и локтевым суставами, а также с голеностопом и запястьем. Общий вид системы, работающей с верхними и нижними конечностями, представлен на рис. 7.

Рис. 7

Роботы для восстановления верхних и нижних конечностей были представлены на симпозиуме по медицинской робототехнике в Пенсильвании . На рис.8 слева: манипулятор GENTLE /s , разработка University of Reading , Великобритания; в центре: манипулятор ARMguide , разработка Rehabilitation Institute of Chicago ; справа: манипулятор Manipulandum , разработка Rehabilitation Institute of Chicago .

Рис.8 Манипуляторы для восстановления верхних конечностей

На рис.9 вверху слева: робот AutoAmbulator , разработка HealthSouth , США; вверху справа: тренажёр для ходьбы, разработка University of California , США); внизу слева: робот GaitMaster 2, разработка University of Tsukuba , Япония); внизу справа: робот для движений конечностей, а также для массажа, разработка Российской Академии Наук) подробно описанная ниже.


Рис.9 Роботы для восстановления суставов нижних конечностей

Воздействия с помощью рассмотренных выше роботов относят к механотерапии. Механотерапия - метод лечебной физкультуры, основанный на выполнении дозированных движений (преимущественно для отдельных сегментов конечностей), выполняемых с помощью специальных приспособлений. Механотерапия применяется в качестве восстановительного лечения при различных двигательных расстройствах, когда необходимо увеличить амплитуду движений в суставах и силу определенных мышечных групп. На некоторых аппаратах можно заниматься сразу после оперативного вмешательства. Выбор движений, выполняемых на механотерапевтических аппаратах, определяется характером ограничения движений и анатомическими особенностями сустава.

    Роботы для выполнения манипуляций на мягких тканях (роботы для массажа)

История появления роботов в ВМ для массажа такова. В 1997 г. на втором форуме IARP по медицинской робототехнике была представлена только одна работа с использованием робототехники для восстановительной медицины – робот для массажа . В 2002 г. на сайте голландской фирмы появился робот для массажа Tickle - щекочущая букашка. В 2003 г. появился российский патент – робот для шлейф-массажа . В 2005 г. на сайте Силиконовой долины появилось сообщение об использовании робота Puma для массажа. За основу этого робота была взята идея, изложенная в российской работе . К сожалению, развитие этой разработки неизвестно. Перечисленные выше работы представляют большинство известных роботов для массажа, если не иметь ввиду многочисленных аппаратных средства для массажа.

Разнообразные аппаратные средства издавна применяются для облегчения труда массажиста, предупреждения профессиональных заболеваний кистей его рук. Простейшие из них: вибраторы, роллеры, насадки для акупунктуры и акупрессуры представляют средства механизации, которые перемещает массажист (рис. 10).


Рис.10. Аппаратные средства восстановительной медицины

Следует заметить, что робот может быть носителем упомянутых аппаратных средств.

Более сложными являются средства автоматизации, например, массажные кресла. Массажные кресла (рис.11) в качестве актуаторов имеют воздушные подушки с регулируемым давлением, ролики с управляемыми усилиями прижатия. Зоны воздействия массажа: шейно-плечевой отдел, спина, поясничный отдел, ягодицы, бёдра, голени, ступни. Виды массажа: разминающий, похлопывающий, поколачивающий, вибрационный, Шиатсу. С пульта управления можно установить желаемый уровень интенсивности массажа.

Рис.11

Пользуются популярностью полуавтоматические аппаратные средства массажа, частично разгружающие массажиста. На рис.12 показана рука производства американской фирмы Meilis, помогающая выполнять прижимные приёмы.

Рис.12

Робот голландской фирмы Tickle весьма прост по конструкции (рис. 13). В металлическом корпусе находятся два электромотора, аккумуляторная батарея и четыре датчика, позволяющих следить за наклоном поверхности, по которой передвигается робот-массажист. Движение осуществляется с помощью двух силиконовых "гусениц", покрытых выступами, создающими массажный эффект. Принцип движения робота напоминает принцип движения танка: каждый из моторов приводит в движение свою гусеницу. Воздействия робота – поглаживающие и щекочушие, вызывающие эффект релаксации.

Рис.13

Робот для шлейф-массажа выполняет плоскостное, непрерывное, прямолинейное поглаживание на больших поверхностях тела (спина, грудь, живот, конечности). Такого рода поверхностное поглаживание отличается особо нежными и легкими движениями, оказывающими успокоительное воздействие на нервную систему, вызывает мышечное расслабление и улучшение кровообращения. Конструкция робота представляет каретку с электродвигателем, перемещающеюся по траверсе вдоль тела пациента (рис.14). Траверса профилирована по рельефу задней поверхности номинального пациента и не может быть перепрограммирована. С каретки свешиваются поглаживающие щётки и прижимаются к пациенту упругими пластинками.

Рис.14

В 2007 году в Японии разработан робот для массажа лица WAO-1 (Waseda Asahi Oral Rehabilitation Robot 1). Робот (рис.15) оснащен двумя 50-сантиметровыми механическими руками, которые массируют лицо пациента с обеих сторон. Безопасность обеспечивается силометрической ограничительной системой, которая раздвигает руки робота в стороны, стоит ему только приложить слишком большое усилие.
Лицевой массаж признан весьма эффективным средством борьбы с сухостью во рту, поскольку стимулирует дополнительное слюноотделение, а также помогает исправить нарушения ротовой структуры.

Рис. 15

Эффективность аппаратных средств массажа определяется адекватностью механического контакта с пациентом. Этот контакт осуществляется через инструмент аппаратного средства. Поэтому в техниках, воспроизводящих руки человека, инструмент должен имитировать контактные свойства человеческой руки: упругость, теплоту, влажность, фрикционные свойства (шероховатость, гладкость, скользкость), координационные возможности (многопальцевость, способность захватывать). В большей степени перечисленные свойства может обеспечить многосуставный манипуляционный робот.

В Московском Государственном Индустриальном Университете разработан робот для выполнения приёмов массажа и движения конечностей в суставах . Основой этого робота является промышленный робот РМ-01, манипуляционная рука которого антропоморфна по размерам и кинематике (рис.16). В контакте с телом робот развивает усилие до 60 Н. Необходимые усилия развиваются и контролируется за счёт позиционно – силовой системы управления, расширяющей возможности штатного робота.

Рис.16

Шестиприводной робот с указанными данными может выполнять множество известных манипуляций непосредственно на мягких тканях, т.е. разнообразный массаж, а также манипуляции на суставах в виде пассивных и активных движений конечностей, постизометрической релаксации в виде сочетаний нагружений и разгрузок мышц конечностей. На рис.17 робот выполняет выжимание длинных мышц спины девочки.

Рис.17

    Активные биоуправляемые протезы верхних и нижних конечностей

Биопротезирование верхних и нижних конечностей, утраченных в результате травм или болезни опирается на более простые решения. Некоторые простейшие решения в какой-то степени лишь эстетически восстанавливают внешность конечностей, другие решения восстанавливают некоторые функции. На рис.18 приведена классификация протезов, в которой выделены классы активных и биоуправляемых протезов.

Рис.18

Разработанные на основе теории баллистических синергий , протезы нижних конечностей не являются активными и не используют биосигналы, но эффективно используют упругость пружин протезов.

В тяговых протезах верхних конечностей, вначале как пассивных, движения схвата кисти вызывались за счёт дополнительных движений сохранившейся части руки или за счёт движения туловища. Передающим звеном вначале были гибкие тяги, впоследствии появились активные тяговые протезы, в которых движения тяг воспроизводились встроенными двигателями.

Активными, но не биоуправляемыми, являются миотонические протезы, в которых управляющими сигналами являются усилия инвалида. Датчики в виде микровыключателей или тензоэлементов измеряют эти усилия и передают на исполнительные приводы кисти.

Рассмотренные способы протезирования без использования биосигналов имеют ряд недостатков. Управляющие тяги обременяют инвалида, затрудняют движения плечевого пояса, число управляющих команд так же, как при миотоническом управлении, ограничено (одна-две команды). Помехами для управления являются случайные внешние толчки в гильзу культи протеза. Тем не менее, простейшие протезы разработаны в виде модульных конструкций и выпускаются серийно .

Развитию биоуправляемых протезов способствовали достижения в области электрофизиологии, биомеханики, микроэлектроники, адаптивных систем управления с обратными связями.

В настоящее время известна немецкая фирма “Otto Bock ”, серийно выпускающая пассивные и активные протезы. На рис.19 приведен активный протез коленного сустава.

Рис.19

Наиболее значительные результаты по биопротезированию в 70-80-х годах в России известны по работам ЦНИИ ПП . В работах ЦНИИПП родилось принципиально новое направление в протезировании конечностей - создание протезов с биоэлект-рической системой управления или биоуправляемых протезов. Сущность нового принципа построения искусственных конеч-ностей состоит в том, что управление внешними источниками энергии, за счет которой работает протез, в своей основе по-добно естественной координации движений здорового человека.

В живом организме управляющие воздействия передаются мышцам посредством биоэлектрических импульсов, отража-ющих команды центральной нервной системы. Подобно этому в протезе руки с биоэлектрическим управлением роль команд-ных сигналов выполняют биотоки, отводимые от усеченных мышц культи. Механизмом, исполняющим команды, является искусственная кисть, снабженная малогабаритным электри-ческим приводом с автономным питанием.

По материалам симпозиума 2004 г. в Пенсильвании известны активные протезы и экзоскелетоны, приведенные на рис.20.

Рис.20 Активные протезы и экзоскелетоны

Одними из первых работ в области активных протезов и экзоскелетонов являются работы Миомира Вукобратовича . Под его руководством были разработаны экзоскелетоны, в одном варианте с электрическими, в другом с пневматическими приводами тазобедренного, коленного и голеностопного суставов для обеих ног пациента (рис.21). Экзоскелетон предназначался для усиления дистрофически слабых мышц нижних конечностей человека во время ходьбы.

Рис.21

Японская компания Matsushita разработала роботизированный костюм, который поможет реабилитации частично парализованных людей (рис.22). Когда человек, страдающий параличом на одну руку, делает движение здоровой рукой, парализованная рука делает то же самое движение, напрягая и сгибая компрессоры, которые играют роль мускулатуры. Повторяя движения здоровой руки, человек в роботизированном костюме может тренировать свою больную руку до восстановления нормального функционирования конечности.

Рис.22

Костюм весит 1,8 кг. Он был разработан совместно компанией

Были проведены испытания костюма в госпитале, и планируется поставить производство на коммерческую основу. Приблизительная цена костюма для использования в реабилитационных клиниках составит 17000 долл., для домашнего использования – около 2000 долл.

Другая токийская компания Cyberdine разработала автоматизированный костюм HAL (Hybrid Assistive Limb) (рис. 23), который помогает пожилым людям и людям с ограниченными способностями ходить. Устройство с датчиками будет доступно в Японии за арендную плату, составляющую 2200$ в месяц. 22-фунтовая компьютерная система, работающая от батареи, крепится к талии. Она управляет приводами на скобах, которые крепятся ремнями к бедрам и коленям, и обеспечивают автоматизированную помощь во время ходьбы.

Рис.23

Выводы

1. Судя по публикациям организаций- разработчиков и медицинских центров области применения медицинских роботов, в том числе для восстановительной медицины, расширяются и спрос на них увеличивается.

2. Медицинские роботы в сравнении другими аппаратными средствами имеют ряд преимуществ. Это – быстрая перепрограммируемость, высокая точность повторения движений, неутомимость, отсутствие субъективных факторов (добросовесность), дружественный интерфейс (психоэмоциональный контакт), партнёрство (для детей вовлечение в игры, в разнообразные движения, например, в утреннюю зарядку). Также адаптация к индивидуальным особенностям человека (позиционно-силовое управление), наличие интеллекта (накопление опыта, анализ, генерация программ), повышенная безопасность за счёт адаптации и интеллекта.

3. В сравнении с руками врача медицинские роботы сегодняшнего дня часто уступают в чувствительности и координации в сложных движениях.

4. Концепция разработки и внедрения роботов в ВМ для здоровых людей состоит в применении адаптивных и интеллектуальных роботов для сохранения и увеличения запасов здоровья населения, восстановлении работоспособности трудящихся.

5. При разработке и внедрении роботов в ВМ следует делать компромиссный выбор между многофункциональными роботами и экономичными специализированными с малым числом приводов.

6. Для разработанных аппаратных средств ВМ, включая роботы, манипулирующие на мягких тканях и суставах, активные и биоуправляемые протезы, эффективно используется тактильная и силометрическая информация, как для разомкнутых, так и для замкнутых силовых и позиционно-силовых систем управления.

7.Биоинформация используется непосредственно как управляющие сигналы, образует замкнутые системы или образует биологические обратные связи через зрение и нервную систему человека.

Список литературы

    Головин В.Ф. Проблемы развития робототехники в восстановительной медицине. Труды конференции “Мехатроника”, СПб., 2008

    Саврасов Г.В. Медицинская робототехника: состояние, проблемы и общие принципы проектирования. // Вестник МГТУ им. Баумана Н.Э. Спецвыпуск «Биомедицинская техника и технология, серия «Приборостроение», 1998

    Разумов А.Н., Головин В.Ф. Массаж как культура повседневной жизни здоровых людей, Вестник оздоровительной медицины, М.: 2010, №6

    Разумов А.Н., Здоровье здорового человека. - М. “Медицина”, 2007

    Разумов А.Н., Пономаренко В.А., Пискунов В.А. Здоровье здорового человека. М.: Медицина, 1996

    Дубровский В.И., Валеология. Здоровый образ жизни. – М.: Retorika- A, 2001.

    Разумов А.Н., Покровский В.И. Здоровье здорового человека, научные основы восстановительной медицины, М.: РАМН РНЦ ВМК, 2007

    Заблудовский В.И., диссертация “Материалы к вопросу о действии массажа на здоровых людей”- СПб.: 1882 г

    Golovin V.F. Robot for massage. Proceedings of JARP 2nd Workshop on Medical Robotics Heidelberg, Germany, 1997

    Biodex system 3. Manual, 20 Ramsay Road, Shirley, New York 11967-4704

    Ковражкина Е.А., Румянцева Н.А., Старицын А.Н., Суворов А.Ю., Иванова Г.Е., Скворцова В.И. Роботизированные механотренажеры в восстановлении функции ходьбы у больных с инсультом. // М.: Расмирби, №1 (24) 2008, с. 11-16.

    Assistive technologies. Proceedings IARP, Workshop on medical robotics. Hidden Valley, Pennsylvania, USA, 2004

    Rehabilitation robotics, Proceedings IARP, Workshop on medical robotics. Hidden Valley, Pennsylvania, USA, 2004

    Мансуров О.И., Мансуров И.Я. Способ аппаратного поверхностного массажа и реализующий этот способ робот для шлейф-массажа. Рос.патент №2005130736/14 от 05.10.2005

    Jones, Kenny C., Du, Winncy, “Development a Massage Robot for Medical Therapy,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM’03), July 23-26, 2003, Kobe, Japan, pp. 1096-1101

    Golovin V.F., Grib A.N. Mechatronic system for manual therapy and massage. Proc. 8-th Mehatronics Forum International Conference, University of Twente, Netherlands, 2002

    Golovin V.F. Robot for massage and mobilization. Proceedings of workshop of AMETMAS-NoE, Moscow, Russia, 1998

    Golovin V.F., Grib A.N. Computer assisted robot for massage and mobilization. Proc. “Computer Science and Information Technologies”, Conference Greece University of Patras, 2002

    Головин В.Ф., Саморуков А.Е. Способ массажа и устройство для его осуществления. Рос. патент № 2145833, 1998

    Головин В.Ф. Мехатронная система для манипуляции на мягких тканях. / Мехатроника, автоматизация, управление. – М.: 2002, №7

    Питкин М.Р. Биомеханика построения протезов нижних конечностей.-СПб.: Изд-во “Человек и здоровье”, 2006.-131с.

    Конструкции протезно-ортопедических изделий. Под ред. Кужекина А.П. М. “Лёгкая и пищевая промышленность”, 1984

    Якобсон Я. С., Морейнис И. Ш., Кужекин А.П. Конструкции протезно-ортопедических изделий /Под редакцией А.П. Кужекина. М., : Лёгкая и пищевая промышленность, 1984

    Вукобратович М. Шагающие и антропоморфные механизмы. Изд.-во “Мир”, М. 1976

Казанский Государственный

Технологический Университет

Реферат на тему:

Робототехника в медицине

Выполнил студент группы

Нигматуллин А.Р.

Казань 2010.


Вступление

1. Виды медицинских роботов

Заключение


Вступление

В эпоху бурного развития науки и техники появляется множество различных нововведений в самых различных областях. Прилавки супермаркетов заполняются экзотической пищей, в торговых комплексах появляются одежды из новейших материалов, а в гипермаркетах электроники и того дальше, невозможно угнаться за развитием новых изобретений. Все привычное старое стремительно сменяется на необыкновенное, новое, к которому так не просто привыкнуть. Но если бы не было прогресса, то люди не познали бы множества загадок, которые еще не раскрыты, и природа тщательно скрывает их от нас. Несмотря на все это, благодарю высокой профессиональности современных ученых физиков, безостановочно ведутся разработки в различных сферах. Простой человек вряд ли озадачивался вопросом что же нового можно внести в этот и без того безгранично цивилизованный и прогрессивный мир. Для примера можно рассмотреть наш мир, каким он был даже одну сотню лет назад. Не было не телевизоров, не компьютеров, не бытовой техник, без которой современному человеку в быту просто не обойтисьли даже 10 лет назад, когда сотовые телефоны только –только вышли в свет и были громоздкими и очень малофункциональными, что касается и компьютерной техники. Наука движет мир вперед, и в любых областях жизнедеятельности человека нужны какие – либо нововведения. В данном пример хотелось бы выбрать как определенный аспект – область медицины, а точнее ее технического потенциала. Медицина так же не стоит на месте, появляются новее сложнейшие аппараты, для жизнеобеспечения человека, примером тому могут стать множество аппаратов, например аппарат для искусственной вентиляции легких, либо аппарат искусственной почки и т.п. Появились миниатюрные измерители сахара в крови, электронные измерители пульса и давления, этот список можно дополнить неоднократно. Конкретнее хочется остановиться на примере внедрения робототехники в медицинскую отрасль. Различные роботы создаются человеком примерно с конца 20 –ого века, за пройденное время они были значительно улучшены и модернизированы. На данный момент существуют роботы – помощники, военные разработки роботов, космические, бытовые и конечно медицинские. Далее стоит подробнее разобрать какие виды роботов и для какого применения существуют на данный момент времени.


Виды медицинских роботов

Один из наиболее известных и прославленных достижений последнего времени стал робот по названием «Да Винчи», который, как можно догадаться был назван в честь великого инженера, художника и ученого Леонардо Да Винчи. Новинка позволяет хирургам выполнять самые сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Робот, который может применяться в кардиологии, гинекологии, урологии и общей хирургии, был продемонстрирован медицинским центром и отделением хирургии университета штата Аризона.

Во время операции с “да Винчи” хирург находится за пару метров от операционного стола за компьютером, на мониторе которого представлено трехмерное изображение оперируемого органа. Врач управляет тонкими хирургическими инструментами, проникающими в тело пациента сквозь небольшие отверстия. Такие инструменты с дистанционным управлением можно использовать для точных операций на небольших и труднодоступных участках тела.

Доказательством необычайных возможностей “да Винчи” стал первый в мире полностью эндоскопический байпас, выполненный совсем недавно в Колумбийском Пресвитерианском медицинском центре в Нью-Йорке. Уникальную операцию провели директор центра по роботизированной кардиохирургии Майкл Аргензиано, и заведующий отделом кардиоторакальной хирургии доктор Крейг Смит. При этом они использовали всего лишь три небольших отверстия - два для манипуляторов и одно - для видеокамеры. Понять, что это значит, может только человек, хоть раз наблюдавший “традиционную” операцию на открытом сердце.

Действия бригады, “открывающей” грудную клетку пациента, производят на новичка (по журналистскому заданию мне как-то пришлось побывать в этой роли) неизгладимое впечатление. До сих пор помню мурашки по всему телу от жуткого визга разрезающей грудину дисковой пилы и огромную рану, в которой деловито сновали руки в окровавленных резиновых перчатках.

В Соединенных Штатахбайпасили аортокоронарное шунтирование является самой распространенной операцией на открытом сердце. Ежегодно эту процедуру проходят здесь 375 тысяч человек. Широкое внедрение “да Винчи” могло бы значительно облегчить их судьбу, помогая пациентам быстрее поправляться после операции и раньше выписываться из госпиталей.

Главный хирург аризонского центра, где испытывают “да Винчи”, доктор Алан Гамильтон вообще уверен в том, что роботостроение произведет революцию в хирургии. Пока что эта революция только начинается, а вот в... кино “да Винчи” уже произвел изрядный фурор. Хирургический робот сыграл роль в последнем кинофильме сериала о Джеймсе Бонде “Умри в другой день” (Die Another Day).

В начале фильма крупным планом показываются три механические руки, шарящие по телу захваченного врагами агента 007. “Хирурги и шпионы похожи друг на друга, поскольку они стремятся выполнить свои задачи без излишней суеты и с использованием новейших технологий, - сказал представитель лондонского Имперского колледжа, где трудится сейчас “да Винчи”. - Фильмы о Джеймсе Бонде всегда восхищали меня демонстрацией невиданных технических новинок. Но я никогда не думал, что когда-нибудь отдел, который я возглавляю, будет сотрудничать с производителями бондианы”.

“Да Винчи” - лишь один из примеров развития новой отрасли в медицине.

Другие роботы применяются в самых различных операциях, вплоть до хирургии головного мозга. Пока что эти устройства достаточно громоздки, но врачи надеются на появление и миниатюрных помощников. Прошлым летом, например, отдел энергетики американской Национальной лаборатории Sandia в Альбукерке уже построил самый маленький в мире робот высотой в один сантиметр. А британская корпорация Nanotechnology Development разрабатывает крошку Fractal Surgeon, который будет самостоятельно собираться из еще меньших блоков внутри человеческого тела, проводить там необходимые действия и саморазбираться.

Теперь же робота оснастили самыми продвинутыми "глазами" в мире(о чём свидетельствуетпресс-релизкомпании). Трёхмерное зрение было у него и раньше, а вот высокой чёткости добились только сейчас.

Новая версия позволяет следить за операцией сразу двум хирургам.Один из них может как ассистировать, так и учиться мастерству у старших коллег. На рабочем дисплее может быть отображена не только картинка с камер, но и два дополнительных параметра, например данные ультразвука и ЭКГ.

Многорукий da Vinci позволяет оперировать с большой точностью, а значит, и с минимальным вмешательством в организм пациента. В результате восстановление после операции происходит быстрее, чем обычно (фото 2009 Intuitive Surgical)

Еще одна интересная новость. Сотрудники Университета Вандербильта (США) выступили с концепцией новой автоматической когнитивной системы TriageBot. Машины будут собирать медицинскую информацию, осуществлять основные диагностические измерения и в конечном итоге ставить предварительные диагнозы, пока люди занимаются более неотложными проблемами. В результате пациенты будут меньше ждать, а специалисты вздохнут свободнее и существенно снизят количество ошибок.«Последние достижения в области дизайна гуманоидных роботов, сенсорных технологий и архитектуры когнитивного контроля сделали такую систему возможной», - подчёркивает соавтор проекта Митч Уилкс.В США около 40% пациентов отделений экстренной помощи поступают туда в состоянии, опасном для жизни. Врачам приходится уделять им первоочередное внимание. Роботы могли бы заняться остальными 60%.Если проект окажется успешным, через пять лет возле стойки регистрации появятся электронные терминалы, подобные тем, что установлены в аэропортах, а также специальные «умные» стулья и мобильные роботы.При поступлении пациент должен прежде всего зарегистрироваться. В предлагаемой системе сопровождающее лицо сможет внести все необходимые данные через терминал с сенсорным экраном. Возможны голосовые подсказки. При этом автомат сможет распознавать наличие критической информации (например, острая боль в груди) и информировать о ней врача, чтобы пациентом занялись как можно скорее. В противном случае больного направят в зал ожидания.План более подробной диагностики пациента разрабатывается в соответствии с этими первоначальными сведениями. В предлагаемой системе простейшие процедуры можно проделать уже в приёмной, на специальном стуле, который измерит кровяное давление, пульс, насыщение крови кислородом, частоту дыхания, высоту и вес.Кроме того, мобильные помощники будут периодически проверять состояние пациентов в зале ожидания, уделяя особое внимание артериальному давлению, частоте пульса и, возможно, интенсивности болевых ощущений. В случае обнаружения критических изменений робот обязан проинформировать человеческий персонал.Последний элемент системы TriageBot - это администратор, который следит за машинами, обеспечивает связь с больничной базой данных и служит посредником между автоматикой и медиками.Планируется провести ряд исследований, в ходе которых будет определён точный набор функций роботов и их внешний вид. Параллельно разрабатываются прототипы.

Для более точных и удобных расчетов ученые создали чудного робота –фармацевта. Электронно-механическое чудо, работающее в большом подвале Пресвитерианской больницы в городе Альбукерке, штат Нью-Мексико, зовут Рози. “Родитель” этого мощного механического агрегата, перемещающегося по четырехметровому рельсу в темной застекленной комнате, - новое подразделение корпорации Intel - Intel Community Solutions, использующее достижения фирмы для решения социальных задач.

Задача Рози, - приготовление и распределение лекарств сотен наименований. Работает он круглосуточно, практически не делает перерывов и при этом совершенно не ошибается. За два с половиной года службы в больничной аптеке не было ни одного случая, когда бы пациенту отправили не то лекарство. Коэффициент точности работы Рози - 99,7 процентов, а это значит, что сортировка и дозировка прописанных препаратов никогда не отличается от тех, что указаны в рецептах врачей.

Более того, Рози помог своевременно обнаружить множество ошибок. Рози никогда не отправит больному лекарство с истекшим сроком годности. Залогом его точности являются заложенные в электронный мозг машины государственные стандарты контроля качества. Между тем, согласно данным Национального института здоровья в Вашингтоне из-за ошибок с лекарствами в стране ежегодно умирают около 50 тысяч человек. Но приготовление и распределение лекарств - не единственная проблема, которую в Пресвитерианской больнице решили с помощью Рози. До его появления было очень сложно следить за отпуском наркотических средств: сотрудники тратили уйму времени, пересчитывая таблетки, чтобы ни одна из них не осталась неучтенной. Сегодня от этой рутинной работы их освободил робот Рози.

Но и это еще не все. Механической “рукой” скользящий по рельсу Рози собирает висящие вдоль стен маленькие пакетики с таблетками, на каждый из которых нанесен уникальный бар-код. Затем он вкладывает их в герметические конверты и отправляет пациентам.

На свет так же появились два робота помощника – это робот нянька, который ухаживает за больными людьми, в частности страдающими от болезни Альцгеймера, и робот физиотерапевт, позволяющий быстрее адаптироваться людям перенесшим инсульт.

Недавно американские пациенты с болезнью Альцгеймера получили помощника, который облегчает им общение с врачами и родственниками. Оборудованный камерой, экраном и всем необходимым для беспроводной связи через Интернет, робот Companion позволяет врачу контактировать с пациентом, который находится в специализированной клинике. Робот также используется для обучения персонала, помощи пациентам, имеющим проблемы с передвижением, общения пациентов с детьми. Как ни странно, пациенты, обычно неохотно принимающие все новое, отнеслись к механическому собеседнику совсем неплохо: показывали на него, смеялись, даже пытались заговаривать с ним.

По мнению исполнительного директора создавшей машину компании InTouch Health Юлина Ванга, применение роботов при уходе за престарелыми людьми может снять остроту проблемы старения нации. В условиях, когда уже к 2010 году число пенсионеров в стране возрастет до 40, а к 2030 - до 70 миллионов, это очень важно. Пока же фирма собирается сдавать своих роботов в аренду домам престарелых. В будущем компания планирует создание роботов, которые смогут приводить в движение инвалидную коляску.

Настоящий шаг в будущее сделали инженеры из Массачусетского технологического института, заменившие врача-физиотерапевта роботом. Как известно, люди, перенесшие инсульт, надолго забывают о своей привычной жизни. В течение многих месяцев и даже лет они вновь учатся ходить, держать ложку в руках, совершать те обыденные действия, о которых раньше даже не задумывались. Теперь им могут помочь не только врачи, но и роботы.

Речь идет о сеансах физиотерапии, необходимых для восстановления координации движений рук. Сейчас пациенты обычно занимаются с врачами, которые показывают им соответствующие упражнения. В отделения реабилитации Бостонского городского госпиталя, где проводятся испытания новой установки, выздоравливающему от инсульта предлагается с помощью джойстика перемещать на экране по заданной траектории небольшой курсор. Если же человек не может этого сделать, управляемый компьютером джойстик с помощью встроенных электромоторов сам переместит его руку в необходимое положение.

Врачи остались довольны работой новинки. В отличие от человека, робот может совершать одни и те же движения тысячи раз в день и при этом не уставать. Что касается самих врачей, то им не стоит бояться безработицы: просто вместо того, чтобы часами сидеть с больными, они смогут разрабатывать новые, более эффективные программы тренировок.

Так как медицина является довольно обширной областью науки, не обошлось здесь и без вмешательства современных нанотехнологий. Вот что можно отметить в этом разделе.

Беспорядочно мельтешащие под микроскопомбактериивнезапно замирают на месте. Затем, будто сговорившись, начинают выстраиваться в ровную линию. Микробы за считаные секунды занимают свои места в колонне, и тут в движение приходит весь строй -бактериикак по команде синхронно поворачиваются налево.

Движениями микробов действительно управляют. Этим занимается сидящий за пультом ученый - профессор Политехнической школы Монреаля Сильван Мартель. Созданная канадским ученым установка контролирует перемещениебактерийс помощью магнитного поля с точностью до тысячных долей миллиметра. Недавно исследователь показал свой прибор в действии. 5000бактерийсогласованно передвигали в капле воды микроскопические полимерные блоки и сложили из них миниатюрное строение.

Это только начало испытаний. В ближайшем будущем такую «рабочую силу» можно будет применить с большей пользой - в медицине. Уже много лет в лабораториях по всему миру пытаются создатьМИКРОРОБОТОВ, которые смогли бы выполнять различные операции внутри организма пациентов. Дальше простейшихпрототипову инженеров дело пока не пошло. Теперь ученые получили возможность пойти обходным путем - на смену сложным и неэффективным устройствам приходят микроорганизмы.

Возведенноебактериямистроение можно разглядеть только под микроскопом. Оно напоминает египетскую пирамиду. Сходство не случайно. «Пирамиды - один из первых шагов человека к созданию действительно сложных конструкций, - рассказывает Сильван Мартель. - Мы подумали, что будет символично, если микроорганизмы выполнят именно такое задание». Настоящие пирамиды сооружали многие годы.Бактерииуправились с моделью за 15 минут. Это, несмотря на то, что строительные блоки были куда крупнее самих «рабочих».

Микроорганизмы работали сообща. Под микроскопом 5000бактерийвыглядели как сплошное темное облако. Вот этот рой нависает над одним из «кирпичей». В следующую секунду микробы начинают медленно, но верно толкать блок на заданное в чертеже место. «Мы пока только обкатываемтехнологию, - говорит Мартель. - В принципе, все то же самое можно делать значительно быстрее».

Секрет успеха - в выдающихся способностях этих микроорганизмов. Канадские ученые используют в работебактерииMagnetospirillum magnetotacticum. «Оказалось, это настоящие рекордсмены, - объясняет Мартель. - Они движутся на порядок быстрее другихбактерий». Кроме того, эти микроорганизмы чувствительны к магнитным полям - они в больших количествах накапливают в себе соединения железа. Ученые пока не очень хорошо понимают, зачем это нужно самим микробам. Зато теперь понятно, как такую особенность может использовать человек. С помощью магнитного поля Мартель заставляетбактерииразворачиваться в нужную сторону. Дальше они двигаются самостоятельно - у них есть специальные жгутики, работающие, как гребные винты кораблей.

Они могут перемещаться не только в капле воды под микроскопом. Канадский ученый ввелбактериив кровь лабораторных крыс и с помощью магнитного поля заставил микробов маневрировать в сосудах. Оказалось, бактерии способны двигаться даже против течения. Правда, преодолевать поток им удавалось только в небольших капиллярах, где кровь циркулировала медленно. В крупных артериях «пловцов» безнадежно сносило - скорость жидкости там достигала нескольких десятков сантиметров в секунду. Размножаться в крови эти микробы не способны, поэтому на здоровье грызунов их присутствие не повлияло. Микроорганизмы некоторое время двигались по сосудам, а затем погибли.

Эффективности бактериальных двигателей позавидует любой инженер. «Главная проблема, о которую разбиваются попытки создать медицинскихМИКРОРОБОТОВ, - их габариты, - рассуждает Владимир Лобаскин, физик из Университетского колледжа Дублина. - Требования к размеру этих устройств таковы, что для них очень непросто создать достаточно мощный мотор». Сам Лобаскин занимается теоретическими расчетами эффективности как раз таких вот микроскопических двигателей. «Технические характеристики»бактерийМартеля произвели на физика большое впечатление: «Это практически готовая система для решения медицинских задач».

Похоже, разработчикам настоящихМИКРОРОБОТОВна это действительно нечем ответить. Один из самых последнихпрототиповбыл создан несколько лет назад в швейцарском Институтеробототехникии интеллектуальных систем. Он представляет собой крошечную металлическую спираль, которую можно разглядеть только под очень мощным микроскопом. Попав в переменное магнитное поле, она начинает вращаться и работать, как пропеллер. Направлением движения этого устройства тоже можно управлять с помощью магнитов.

Со временем разработчики рассчитывают использовать его для доставки лекарств в различные ткани человеческого организма. Пока получается не очень хорошо. Эти изделия примерно в десять раз медленнее «живыхроботов», с которыми работают в Канаде. О маневрах в кровеносных сосудах говорить даже не приходится. В этом нет ничего удивительного, уверен Мартель. За миллионы лет эволюция хорошо поработала надбактериями. Быстро создать такое же совершенное искусственное устройство будет очень непросто.

Именно поэтомубиотехнологииз корейского Национального университета Чуннам попробовали совместить в своей работе два противоположных подхода. Созданный имипрототипмедицинскогоМИКРОРОБОТАпостроен из синтетического полимера и клеток сердечной мышцы человека - кардиомиоцитов. Клетки натянуты на гибкий пластиковый каркас на специальных ножках. Сокращаясь, клетки приводят в движение всю конструкцию, и устройство начинает перебирать ногами. Разработчики предполагают, что в будущем подобныероботысмогут путешествовать по кровеносным сосудам человека, цепляясь за стенки. Функционировать такие изделия смогут очень долго - «клеточный двигатель» использует в качестве топлива растворенную в крови глюкозу.

«Всего несколько лет назад разговоры ороботах, доставляющих лекарства в определенные точки организма, казались фантазиями, - говорит Алексей Снежко, физик из Аргоннской национальной лаборатории (США). - Теперь понятно, что в самое ближайшее время их начнут испытывать на людях».

Как это будет выглядеть, понятно уже сейчас. В одном из последних опытов Сильван Мартель и его коллеги ввелибактериив организм больной раком крысы. А затем поместили ее в медицинский томограф. Эти приборы используют сильные магнитные поля для построения трехмерных карт организма пациента. После небольшой переделки установка превратилась в командный пункт для микробов. С ее помощью ученые провелибактериипо кровеносной системе грызуна прямо в район опухоли. Микроорганизмы доставили к пораженной области учебный груз - флуоресцирующее вещество. Вскоре Мартель планирует повторить эксперимент. На этот раз бактерии будут нести противоопухолевый препарат.

Так же нанотехнологи продемонстрировали довольно впечатляющие образцы электронной кожи. Электронная кожа впервые ощутила прикосновения бабочки

Решётка из тончайших полупроводниковых нитей, совмещённая с электродами и меняющей в ответна давление проводимость резиной типа PSR (вверху) превращена калифорнийскимиумельцами в "лоскут кожи" (внизу)(иллюстрации Kuniharu Takei et al./Nature Materials).

На этом рисунке кожи робота каждый чёрный квадратик соответствует одному "пикселю", элементарной точке, отвечающей за осязание (иллюстрация Ali Javey and Kuniharu Takei, UC Berkeley).Чувствительность кожи авторы рекламируют красочной фантазией: робот с такимманипулятором смог бы запросто обращаться с куриным яйцом, не уронив его и не раздавив (иллюстрация Ali Javey, Kuniharu Takei/UC Berkeley).

Ещё одна иллюстрация чувствительности стэнфордского сенсора: он регистрирует прикосновения перуанской бабочкиChorinea faunus(фото L.A. Cicero/Stanford University).

Уже немало копий сломано вокруг проблемы создания робототехнического аналога самого крупного органа человека. Главный вопрос – как воспроизвести невероятную чувствительность кожного покрова, который может ощутить дуновение ветерка от пролетевшего насекомого? Недавно две исследовательские группы из Калифорнии одновременно объявили о своих впечатляющих ответах.

Первая команда, из Калифорнийского университета в Беркли, выбрала в качестве ключевого элемента для своей искусственной кожи нанопроводки. Как сообщают учёные впресс-релизе, они вырастили крошечные германиевые и кремниевые нити на специальном барабане, а затем прокатили этим валиком по подложке – клейкойполиимиднойплёнке.

В итоге учёные получили эластичный материал, в структуру которого были включены нанопроводки, играющие роль транзисторов.

Поверх них исследователи нанесли изолирующий слой с периодическим рисунком из тонких отверстий, а ещё выше – чувствительную к прикосновению резину (PSR).Между резиной и нанопроводками при помощи фотолитографии навели проводящие мостики (для этого и понадобились отверстия в слое изолятора) и, наконец, сдобрили бутерброд тонкой алюминиевой плёнкой – финальным электродом. (Подробности авторы системы представили встатьев Nature Materials).Такой эластичный набор способен определять и точно локализовать участки, к которым прикладывается давление.Имя эта кожа получила банальное и предсказуемое - e-skin. Новая технология позволяет использовать в качестве подложки множество материалов, от пластика до резины, а также включать в её состав молекулы различных веществ, например, антибиотиков (что может оказаться весьма важным).На опытном куске e-skin размером 7 х 7 сантиметров уместилась матрица 19 х 18 пикселей. В каждом из которых содержались сотни наноштырей. Такая система оказалась способна регистрировать давление от 0 до 15 килопаскалей.Примерно такие уровни нагрузки испытывает человеческая кожа при печатании на клавиатуре или удерживании на весу небольшого объекта.

Али Джавей (Ali Javey), глава проекта e-skin в Беркли(фото UC Berkeley)

Учёные указывают на вполне определённое преимущество своей разработки перед аналогами. Большинство проектов такого рода полагается на гибкие органические материалы, которым для работы требуется высокое напряжение.

Синтетическая кожа из Беркли - первая, изготовленная на основе монокристаллических неорганических полупроводников. Она функционирует при напряжении всего в 5 вольт. Но что ещё интереснее - опыт показал, что e-skin выдерживает до 2000 изгибаний с радиусом 2,5 миллиметра без потери чувствительности.

В качестве очевидной области применения в будущем такой кожи можно предположить чувствительные манипуляторы,способные оперироватьхрупкими предметами.

Сверхаккуратную кибернетическую руку можно дополнительно оснастить датчиками тепла, радиоактивности, химических веществ, покрыть тонким слоем лекарств и использовать на "пальцах" роботов-хирургов или спасателей.

В последнем случае (при работе роботов с людьми) очень важным с точки зрения безопасности окажется тот факт, что электронная кожа из Беркли, как и человеческая, ощущает прикосновение почти мгновенно (в течение миллисекунд). В теории она может полностью покрывать манипулятор робота или даже всю машину.

Вверху: профессор Чжэнань Бао (Zhenan Bao) – лидер стэнфордского проекта.Внизу: такая простая полимерная плёнка с алюминиевыми проводниками послужила отправной точкой в построении новой кожи(фото L.A. Cicero/Stanford University, Stefan C. B. Mannsfeld et al./Nature Materials).

Вторая разработка, родом из Стэнфордского университета, использует другой подход. Как сообщают учёные впресс-релизе, они поместили между двумя электродами слой высокоэластичной формованной резины.

Такая плёнка накапливает электрические заряды подобно конденсатору. Давление сжимает резину – а это, в свою очередь, изменяет число электрических зарядов, которые способен хранить сандвич, что и определяет электроника благодаря набору электродов.

Описанный процесс позволяет обнаружить легчайшее прикосновение, что учёные доказали на опыте. Они использовали в качестве "тестера" мух.В ходе эксперимента квадратная матрица со стороной в семь сантиметров и в миллиметр толщиной чувствовала посадку насекомых, весящих всего 20 миллиграммов, и реагировала на их касания с высокой скоростью.

Под микроскопом матрица похожа на поле, усеянное остроконечными пирамидками. В таком материале пирамидок этих может быть от сотен тысяч до 25 миллионов на квадратный сантиметр, в зависимости от требуемого пространственного разрешения.

Такой приём (вместо применения сплошного слоя резины) был необходим, поскольку монолитный материал, как выяснилось, терял свои свойства при сдавливании – точность регистрации зарядов падала. А свободное пространство вокруг микроскопических пирамид позволяет им легко деформироваться и восстанавливать исходную форму после снятия нагрузки.

Гибкость и прочность стэнфордской электронной кожи оказались очень высоки. Её нельзя растягивать, но вполне можно сгибать, обернув ею, например, руку робота.

А потому в качестве сфер приложения своей разработки учёные видят опять же хирургических роботов. Но не только. Искусственная кожа могла бы стать основой электронных бинтов, - рассуждают американские исследователи, - способных подавать сигнал при слишком слабом или опасно сильном затягивании. А ещё подобные сенсоры могли бы точно фиксировать степень сжатия руками рулевого колеса, вовремя предупреждая водителя, что он засыпает.

Обе команды утверждают, что ещё продолжат развивать данное направление экспериментов. Так что роботы будущего, по всей видимости, всё же получат кожу, приближённую по возможностям к человеческой. И пусть внешне она будет заметно отличаться от нашей – её чувствительность придаст новый смысл понятию робот-андроид.

Сенсационное заявление дала компания по производству видеокарт для компьютеров. Не успели написать о первой хирургической операции, проведенной исключительно «руками» роботов, как NVIDIA приготовила другую «бомбу» из мира медицины. На калифорнийской конференции GTC 2010 производитель графических чипов озвучил весьма смелую идею – проводить операцию на сердце… без остановки сердца и вскрытия грудной клетки!

Робот-хирург будет производить операцию с помощью манипуляторов, подведенных к сердцу через небольшие отверстия в груди пациента. Технология визуализации «на лету» оцифровывает бьющееся сердце, демонстрируя хирургу трехмерную модель, по которой он может ориентироваться точно так же, как если бы смотрел на сердце через вскрытую грудную клетку.Основная сложность заключается в том, что сердце совершает большое количество движений за короткое время – но, по словам разработчиков, мощности современных вычислительных систем на базе графических процессоров NVIDIA хватит, чтобы визуализировать орган, синхронизируя движения инструментов робота с биением сердца. За счет этого создается эффект неподвижности – хирургу без разницы, «стоит» сердце или работает, ведь манипуляторы робота совершают аналогичные движения, компенсируя биение!

Пока вся информация об этой невероятной технологии состоит из коротенькой видеодемонстрации, но мы будем с нетерпением ожидать новых сведений от NVIDIA. Кто бы мог подумать, что совершить революцию в хирургии задумала компания-производитель видеокарт…

А Японские умельцы не перестают удивлять приятными новинками. Новый робот-медвежонок носит людей на руках

Японцы остановились на "благоприятном имидже плюшевого медвежонка", посчитав, что человекоподобный робот будет только пугать пациентов (фото RIKEN, Tokai Rubber Industries)

Японский институт физических и химических исследований (BMC RIKEN) и компанияTokai Rubber Industries(TRI)вчера представили "медвежеподобного" робота, предназначенного для оказания помощи медсёстрам в больницах. Новая машина буквально носит пациентов на руках.

RIBA (RobotforInteractiveBodyAssistance) - это усовершенствованная версия андроида RI-MAN.

<...> По сравнению с предшественником RIBA серьёзно продвинулся вперёд.

Как и RI-MAN, новичок способен аккуратно поднимать человека с кровати или инвалидного кресла, переносить его на руках, например в туалет, а потом доставлять обратно и так же бережно укладывать в постель или усаживать в коляску. Но если RI-MAN носил лишь зафиксированных в определённом положении кукол весом 18,5 кг,RIBA уже транспортирует живых людей массой до 61 кило.

Рост "медведя" 140 сантиметров (RI-MAN - 158 см), и весит он вместе с аккумуляторами 180 килограммов (предшественник - 100 кг). RIBA распознаёт лица и голоса, выполняет голосовые команды, ориентируется по собранным видео- и аудиоданным, которые обрабатывает в 15 быстрее, чем RI-MAN, и "гибко" реагирует на малейшие изменения в окружающей среде.

Руки нового робота имеют семь степеней свободы, голова - одну (позже будет три), в талии две степени.Корпус покрыт разработанным TRI новым мягким материалом наподобие полиуретановой пены. Двигатели работают довольно тихо (53,4 дБ), а всенаправленные колёса позволяет машине маневрировать в ограниченном пространстве.

Ну и само собой без протезирования в медицине никуда. Поэтому и здесь есть свои ученые и инженеры безустально разрабатывающие новые устройства. А именно Лаборатория прикладной физики им. Д. Хопкинса преподнесла новый сюрприз. В ходе совместной реализации проекта DARPA и Лаборатория прикладной физики им. Д. Хопкинса (Johns Hopkins Applied Physics Laboratory, APL) подготовили к началу тестирования с участием людей очередное поколение протеза руки, названное Modular Prosthetic Limb (MPL). По задумке разработчиков, искусственная конечность будет полностью управляться мозгом посредством вживленных в него сенсоров и даже обеспечивать тактильные ощущения за счет посылки электрических импульсов с внешних сенсоров в соответствующий участок коры головного мозга. В прошлом месяце APL заявила о заключении контракта на 34,5 млн долл. с DARPA, что должно позволить исследователям провести тестирование своей разработки на пяти особах в течение следующих двух лет.

Ожидается, что третья фаза тестирования – испытания с участием людей – позволит внести усовершенствования как в систему управления нейропротезом, так и в алгоритм генерации сигналов обратной связи. MPL, прошедший стадию многолетнего прототипирования, поддерживает 22 разновидности движений, независимое управление каждым пальцем и весит столько же, сколько и настоящая человеческая рука (около 4 килограммов). Исследователи планируют начать тестирование, оснастив протезом парализованного пациента. Реализованные до сих пор нейропротезы были рассчитаны на замену ампутированным конечностям, в то время как MPL позволяет охватить большее количество случаев, включая недуги, связанные с нарушениями нормальной деятельности спинного мозга, поскольку сигналы управления «снимаются» непосредственно с головного мозга.В ходе совершенствования разработки исследователям предстоит решить еще немалое количество затруднений и сложностей, как уже известных, так и тех, которые, несомненно, будут выявлены в процессе тестирования. Среди подобных проблем – малый срок жизни существующих на сегодняшний день нейроинтерфейсов. Внедренные в жидкие ткани организма кремниевые чипы достаточно интенсивно разрушаются, выходят из строя и нуждаются в замене приблизительно каждые два года. Ранее в этом году DARPA анонсировала программу Histology for Interface Stability Over Time, задачей которой названо увеличение срока службы нейроимплантатов до 70 лет.Хотя основными партнерами по разработке значатся APL и DARPA, к процессу исследований привлекается также множество других учреждений. Так, например, Питсбургский университет уже выполнил работы по вживлению обезьянам имплантатов, позволяющих контролировать руки робота, Калифорнийский технологический институт поможет в разработке дизайна интерфейса мозг-компьютер, а Университет Чикаго поучаствует в реализации системы тактильных датчиков.

Постепенно будут внедрены и роботы помощники, задачей которых будет непосредственная помощь врачам, данные модели уже используются в некоторых клиниках зарубежной медицины. Yurina, робот от японской компании Japan Logic Machine, который способен переносить лежачих пациентов на манер больничной каталки, только гораздо более плавно.

Что еще интереснее, Yurina может трансформироваться в инвалидное кресло, управляемое с тачскрина, контроллера или голосом. Робот достаточно ловок, чтобы перемещаться в узких коридорах, что делает его действительно неплохим помощником для настоящих врачей.Отдельно стоит упомянуть видеодемонстрацию, которую обязательно стоит смотреть с включенным звуком. Чем руководствовались режиссеры ролика, сопровождая видеоряд такой зловещей музыкой, мы не узнаем никогда – однако сочетание «доброго робота» и совершенно неуместной звуковой дорожки точно обеспечит вам порцию здорового смеха.

Приятной новостью стало изобретение роботизированных инвалидных кресел, с помощью специальных датчиков этим креслом управлять гораздо удобнее, однако новинка требует неких доработок, которые в ближайшем будущем и будут осуществлены.

Одним из самых приятных дней в жизни собаковода можно считать такой, когда четвероногий любимец полностью освоит следование за хозяином и будет сопровождать его всегда и везде, не требуя постоянного одергивания поводком. А благодаря стараниям команды ученых из Университета Саитамы (Saitama University) подобную концепцию теперь можно применять и к… инвалидным креслам.

Роботизированное кресло несет на борту камеру и датчик определения расстояния, с помощью чего система отслеживает положение плеч человека, идущего рядом с креслом. За счет этих устройств кресло «понимает», в каком направлении двигается человек, соответственно повторяя его путь. Для сидящего в кресле такой способ перемещения получается более приятным, поскольку инвалидное кресло движется плавно, а не толкается вперед спутником.

Робо-кресло способно также огибать препятствия, правда, до определенной степени. Идея, несомненно, хороша, однако требует некоторой доработки. Представьте такую ситуацию: человек сидит в кресле, а помощник в это время с кем-то оживленно беседует и жестикулирует (соответственно, совершая движения туловищем, плечами и руками). Неужели кресло будет все время «елозить» из стороны в сторону, повторяя движения плеч помощника? Создателям определенно есть над чем поработать.


Заключение

Значение роботов – помощников для человека.

Роботы помощники играют огромную роль в современной медицине. Эта отрасль еще достаточно молода и находится на начальном этапе развития, но, несмотря на это некоторые разработки введены уже во всем мире, они успешно функционируют и приносят незаменимую помощь сотрудникам медицинских учреждений. Главная проблема по моему мнению, что если в развитых странах с устойчивой положительной экономикой эти нововведения будут введены сразу после официальной массовой роботизации, то в развивающихся странах они поступят гораздо позже, а в странах третьего мира эти разработки весьма запозднятся и в ближайшем будущем там точно не будет этих уникальных разработок. Дело в том, что вся эта продукция очень дорогостоящая и для ее покупки нужны будут немалые финансирования, которые далеко не всем странам по плечу. Поэтому в будущем нужно поставить вопрос о снижение стоимости данной аппаратуры в пределах разумного, при помощи определенных конференций и заседаний глав правительств.

На сегодняшний день робототехнологии шагнули далеко вперед, благодаря чему концепция лечения людей значительно изменилась. Исходя из того, какое количество исследовательских групп сейчас занимается изготовлением роботов, в медицине намечается огромный прогресс, особенно если сравнивать с успехами восьмилетней давности.

Первые успешные мероприятия по приходятся на 2006 год, когда ученый Сильван Мартель собрал исследовательскую группу и создал уникального на тот момент крошечного робота, габариты которого едва превышали шарик от обычной ручки. Этот искусственный организм был помещен в сонную артерию живой свиньи, где он успешно перемещался по заданным точкам. С тех пор роботы в медицине заняли свою нишу и продолжают активно развиваться. А если судить по опыту последних нескольких лет, эти технологии движутся огромными шагами.

Преимущества роботов

Главная цель создания подобных «помощников» - перемещаться не только по наиболее крупным артериям человека, но и получать данные с участков с узкими кровеносными сосудами. Благодаря этому применение роботов в медицине позволит выполнять довольно сложные операции без травматического вмешательства. Таким образом, значительно снижается риск смертности от слишком агрессивной анестезии или из-за того, что пациент страдает от аллергической реакции на тот или иной препарат.

Однако это не единственный плюс использования роботов в медицине. Например, подобные технологии могут помочь при лечении рака. Дело в том, что микророботы способны доставлять лекарственные препараты непосредственно к очагу злокачественного образования. В отличие от химиотерапии, когда агрессивные препараты распространяются по всему телу больного и вызывают непоправимые последствия, такой метод не нанесет сильного удара по иммунной системе человека.

Современные роботы в медицине способны справляться с большим перечнем задач. Однако и сегодня остается масса вопросов касательно того, как заставить столь малый искусственный организм перемещаться по крови или отслеживать его местоположение. Но некоторые современные разработки, позволяют справляться с поставленными задачами. Рассмотрим их подробнее.

«Биоракеты»

Эти роботы-помощники в медицине являются своего рода титановыми ядрами, заключенными в алюминиевые оболочки. При этом их размер не превышает 20 мкм. Когда алюминиевая оболочка соприкасается с водой, начинается реакция, в ходе которой на поверхности ядра образуется водород. Именно это вещество заставляет микроконструкцию перемещаться со скоростью, равной 150 своим диаметрам за секунду. Это равносильно тому, что человек ростом 2 метра способен проплыть за столько же времени 300 метров. Химический двигатель этого уникального робота в медицине применяется благодаря добавке специального вещества - галлия. Этот компонент уменьшает скорость образования оксидного налета. Благодаря этому микроробот может проработать порядка 5 минут с максимальным запасом хода 900 мм (при условии пребывания в воде).

Чтобы направить микроскопический агрегат по заданному направлению, используется внешнее магнитное поле. Таким образом, «биоракета» применима для доставки лекарственных препаратов в определенную точку организма человека.

Мускульные роботы

Это довольно интересное направление робототехники. Мускульные роботы в медицине применяются для стимуляции мышечных клеток. Работают такие микроскопические агрегаты посредством электрических импульсов, которые они передают. Сами роботы представляют собой своего рода хребты, изготовленные из гидрогеля. Они работают по такому же принципу, что и в организме млекопитающих. Например, если речь идет о человеческом теле, то мышцы начинают сокращаться благодаря сухожилиям. В случае с микророботом этот процесс происходит благодаря электрическому заряду.

Да Винчи

Робот «Леонардо» в медицине получил особую популярность. Он был создан, чтобы в будущем заменить хирургов. На сегодняшний день этот самостоятельный механизм весом 500 кг, оснащенный четырьмя «руками», способен справляться с огромным количеством задач. Три его конечности оснащены миниатюрными инструментами для выполнения сложнейших операций. На четвертой «руке» находится крошечная видеокамера.

То, как действуют такие роботы в медицине, фото демонстрирует лучше всего. Да Винчи способен оперировать через самые крошечные разрезы, ширина которых составляет не более нескольких сантиметров. Благодаря этому после хирургического вмешательства у пациента не остается безобразных шрамов.

В процессе работы «Леонардо» на некотором отдалении от него сидит медицинский работник, который управляет пультом. Благодаря современному джойстику врач может выполнять сложнейшие манипуляции с ювелирной точностью. Все действия передаются конечностям робота, который повторяет движения пальцев рук.

Стоит также отметить, что «руки» агрегата немного отличаются от человеческих кистей тем, что манипуляторы способны работать в режимах. Кроме этого искусственные «пальцы» не устают и могут мгновенно замирать, если оператор случайно отпустит пульт управления. Врач может контролировать свои движения при помощи мощных окуляров, которые позволяют увеличивать картинку в 12 раз.

«Киробо»

Этот интересный робот был разработан специально для космонавтов, которые испытывают психологическое давление, находясь так далеко от родной планеты. Человекообразная машина отличается небольшими габаритами. Ее рост составляет всего 34 см. Однако этого вполне достаточно. Робот способен поддерживать полноценную беседу, реагировать на вопросы и имитировать «живое» общение. Единственный минус новой разработки заключается в том, что общается он пока что исключительно на японском языке.

Робот прекрасно отличает человеческую речь от прочих звуков. Кроме этого, он способен узнавать людей, с которыми уже общался до этого. Он может определять настроение исходя из мимики и вообще много чего умеет. При необходимости он может даже обнять.

Некоторые ученые полагают, что данные интеллектуальные роботы в медицине не нужны. Однако они вполне могут найти применение в психотерапии.

«ПАРО»

Этот помощник работает в качестве зоотерапевта. Внешне он был создан в виде Наружная оболочка робота изготовлена из мягкого материала, который напоминает натуральную белую шкуру реального животного. Внутри он набит всевозможными датчиками (прикосновения, температуры, света, положения, звука и прочего). Этот полноценный искусственный интеллект прекрасно осознает где он находится, способен откликаться на присвоенное ему имя. Уникальный робот с умилительной мордочкой различает грубость и ласковое отношение.

Сегодня этот интересный робот уже широко применяется для терапии различных категорий пациентов. Его можно погладить, обнять, пообщаться с ним или просто рассказать о своих переживаниях. В будущем данные роботы будут направлены в дома престарелых, детские сады и реабилитационные центры для помощи людям, страдающим от психологических переживаний. Очень часто в послеоперационный период пациенты нуждаются в поддержке, однако в медицинских учреждениях невозможно содержать животных, поэтому такой искусственный интеллект станет настоящим прорывом в восстановительной медицине.

«Хоспи»

Этот робот предназначен для того, чтобы заменить фармацевтов. Это поможет медперсоналу значительно сэкономить время на поиск нужных лекарственных препаратов и доставку их в стенах больниц. По большому счету этот помощник представляет собой роботизированную аптечку, высота которой составляет 130 см. Робот способен перевозить вес до 20 кг, этого вполне достаточно для того, чтобы перемещать по госпиталю большое количество самых разных лекарственных препаратов и образцов. При перемещении "Хоспи" способен огибать препятствия, поэтому риск того, что он столкнется с персоналом или посетителями больницы сведен практически к нулю.

«РП Вита»

Этот робот способен оказывать помощь в консультировании на расстоянии. Виртуальный «помощник» позволяет лечащему врачу совершать обход за считанные минуты. Кроме этого благодаря роботу становится возможным следить за состоянием тяжелобольных пациентов, требующих особенного внимания на протяжении дня и ночи.

Высота чуда техники составляет 1,5 метров. Внутри робота установлена система специальных звуковых и лазерных датчиков, за счет которых осуществляется построение маршрута агрегата. Также он оснащен экраном, на котором будет отображаться лицо лечащего врача. Благодаря этому имитируется полноценное общение с пациентами, которые в полной мере ощущают присутствие медицинского сотрудника. «РП Вита» также оснащен современными диагностическими инструментами. Для работы с агрегатом достаточно ноутбука или планшета.

«Хал»

Данный робот представляет собой специализированный экзоскелет, благодаря которому парализованные люди смогут полноценно передвигаться.

Датчики оборудования закрепляются на коже пациентов и начинают считывать силу импульсов, которые исходят от тех или иных мышц. Если какой-либо узел работает не в полной мере, то активируется экзоскелет, и органы получают необходимые для их работы заряды.

Сегодня робот представлен в двух модификациях: целый скелет или только для ног.

«Ватсон»

Этот суперкомпьютер оснащен сразу 90 серверами по четыре процессора, в каждом из которых установлено по восемь ядер. Оперативная память робота составляет шестнадцать терабайт. «Ватсон» - это онколог, который способен ставить диагнозы за короткое время. Агрегат оснащен отличным искусственным интеллектом, благодаря чему он способен быстро считывать информацию и делать необходимые выводы. Робот за считанные минуты обрабатывает до 600 000 медицинских справочников и других необходимых для диагностирования документов. Врачу остается загрузить в память болезни пациента и получить вероятный диагноз. Кроме того, «Ватсону» можно задавать вопросы, только пока что исключительно в письменной форме.

В заключение

Исходя из быстро развивающихся технологий, несложно сделать вывод, что роботы в медицине в будущем будут незаменимы. Они позволят медицинским учреждениям перейти на новый уровень диагностирования и лечения самых сложных заболеваний. При этом речь идет также и о психических больных.

Робототехника сегодня завоевывает разнообразные области, в которых, казалось бы, всегда будут трудиться люди. Одна из этих областей – медицина. Сегодня роботы делают сложные операции или заменяют органы, жизненно важные для человека. Итак, представляем вам 10 медицинских роботов.

Cue

Биолог Аюб Кхаттак и дизайнер Клинт Север создали устройство, которое должно помочь людям, чувствующим недомогание. Аппарат Cue, анализирующий состояние здоровье своего пользователя, обладает компактными габаритами, что упрощает его повседневное использование. На данный момент Cue показывает уровень витамина D, тестостерона, а также умеет определять способность человека к воспроизводству. Кроме того, аппарат выявляет у своего хозяина наличие таких заболеваний, как ВИЧ и грипп. Для того, чтобы провести анализ, в специальный картридж необходимо поместить образец слюны, крови или слизистой оболочки пользователя. Анализ производится в течение нескольких минут.

Ubot-5

В Массачусетском университете был создан робот, помогающий людям пережить последствия инсульта. Так, в 2013 году Ubot-5 помог восстановиться 72-летнему мужчине, имеющему проблемы с сердцем. Робот умеет оценивать состояние речи больного, а также делать пациенту физиотерапию. По итогам роботы Ubot-5 с больным был выявлен положительный эффект как в области движения, так и в области речи больного.

Argus II

Компанией Second Sight разработала устройство, которое способно частично восстановить зрение незрячим. Вначале необходимо имплантировать специальную матрицу электродов. Кроме того, необходимы солнечные очки с миниатюрной видеокамерой. Изображение, которое попадает в объектив этой видеокамеры, передается к визуальному процессору, который находится на поясе пользователя. Далее визуальный процессор посылает данные изображения на очки в виде 60-пиксельных черно-белых изображений, которые, в свою очередь, передаются на упомянутые выше матрицы. Электроды этих матриц воздействует на фоторецепторы и клетки, передающие сигналы от фоторецепторов в зрительный нерв. Безусловно, Argus II передает пользователю изображения в виде довольно грубых форм, однако данное устройство помогает незрячим ориентироваться в пространстве.

Lightbot

Конструкторы из японской компании NSK создали робота-поводыря Lightbot, способного помогать незрячим людям, а также людям, имеющим проблемы с передвижением. Ориентируется Lightbot в окружающем мире, используя трехмерный датчик. Робот умеет распозновать препятствие, передвигается по лестнице как вверх, так и вниз. Благодаря колесам Lightbot умеет не только шагать, но и ездить. Кстати, скорость движения робота зависит от скорости движения использующего его человека.

Robocast

Ученые из Великобритании, Германии, Италии и Израиля создали робототехническую систему Robocast, призванную помочь нейрохирургам. Основная задача этой системы – помочь во время операций по трепанации мозга. Как известно, данная операция является крайне опасной и трудоёмкой: ошибка на миллиметр может привести к необратимым повреждением головного мозга. Robocast обладает системой «мозг – компьютер», которая включает в себя автоматический планировщик траектории инструмента, управляющий механизм с обратной связью, набор датчиков операционного поля, микроконтроллеры и двух роботов. Таким образом, большой робот контролирует своего маленького коллегу, размещает его в необходимом месте и координирует его в нужном направлении. Маленький робот необходим для внедрения хирургического инструмента в мозг пациента. Кроме того, Robocast всегда можно перевести на ручное управление.

Veebot

Обычный врач далеко не всегда попадает в вену с первого раза. Поэтому для забора крови компания Mountain View был создан робот Veebot. Робот определяет место нахождения вены в руке пациента, используя камеру, специальное программное обеспечение и инфракрасную подсветку, а также Weebot исследует вену при помощи ультразвука. Таким образом робот определяет, что толщина вены достаточна для прокола.

7 Finger Robot

Ученые из Массачусетского института технологий создали специальное устройство, увеличивающее количество пальцев на руке до семи. В первую очередь, дополнительные пальцы предназначены для людей, которым приходится пользоваться лишь одной рукой. Движениями механических пальцев управляют биологические пальцы пользователя. Другими словами, дополнительные пальцы копируют те движения, которые делают человек (например, захватывающее движение). Также, благодаря своим сервомоторам, дополнительные пальцы способны развивать силу, равную силе обычных пальцев.

Робот-сиделка VGo

Американской компанией Vgo Communication был создан робот-сиделка для больных, прошедший тестирование в одной из бостонских детских больниц. Основные задачи робота VGo заключаются в том, чтобы помочь в восстановлении больным, а также обеспечить им связь с внешним миром. Например, благодаря роботу VGo, дети, проходящие лечение в больнице, могут дистанционно посещать школу. Кроме того, робот позволяет администрации больницы контролировать деятельность своих подчиненных. Рост VGo составляет 164 сантиметров, передвигается он на четырех колесах. Ещё VGo может делать анализ крови пациентов.

Amigo

Ученые Лестерского университета (Великобритания) сконструировали медицинского робота Amigo, задачей которого является лечение аритмии сердца. Робот может помочь врачам вводить катетер к поврежденным участкам сердца. Amigo также способен подать больному стакан воды. Робот подключен к единой сети, в которой объединены разнообразные роботы по всему миру. Цель данной сети состоит в объединении информации о возможностях роботов, а также в создании программного обеспечения и навигационных карт, что должно сделать этих роботов доступнее в использовании.

Jukusui-Kun

Доктор Кабе, работающий в лаборатории японского университета Waseda, создал робота-подушку под названием Jukusui-Kun. Подушка выглядит как мягкая игрушка-медведь. Основные пользователи Jukusui-Kun – люди, страдающие синдромом апноэ сна. Во время сна такие люди испытывают трудности с дыханием – их мучает хронический храп. К робоподушке прилагаются беспроводной датчик, который подкладывается под простынь, беспроводной датчик, который прикрепляется к пальцу пациента, а также микрофон. Подушка анализирует состояние пользователя во время сна, уровень шума, движения спящего, а также количество кислорода в крови. На движения спящего Jakusui-Kun реагирует поглаживанием, после чего человек принимает позу, наиболее благоприятную для сна.