Аккомодация – механизм и функции. Физиология органа зрения сельскохозяйственных и домашних животных Как происходит аккомодация

Аккомодация – механизм и функции. Физиология органа зрения сельскохозяйственных и домашних животных Как происходит аккомодация
Аккомодация – механизм и функции. Физиология органа зрения сельскохозяйственных и домашних животных Как происходит аккомодация

12540 0

Для нормальной жизнедеятельности человека необходимо ясное видение предметов на разном расстоянии. Способность глаза фокусировать изображение рассматриваемых предметов на сетчатке независимо от расстояния, на котором находится предмет, называется аккомодацией. Таким образом, аккомодация — это способность глаза видеть хорошо и вдаль и вблизи.

В глазу человека аккомодация осуществляется за счет изменения кривизны хрусталика, следствием чего является изменение преломляющей способности глаза. В процессе аккомодации участвуют два компонента активный - сокращение ресничной мышцы и пассивный - обусловленный эластичностью хрусталика.

Физиологический механизм аккомодации заключается в следующем: при сокращении волокон ресничной мышцы происходит расслабление цинновой связки, к которой подвешен заключенный в капсулу хрусталик. Ослабление натяжения ее волокон уменьшает степень натяжения капсулы хрусталика. При этом хрусталик вследствие своей эластичности приобретает более выпуклую форму, в связи с чем преломляющая сила его увеличивается и на сетчатке уже фокусируется изображение близко расположенных предметов. В результате расслабления ресничной мышцы развивается обратный процесс (рис. 1).

Рис. 1. Аккомодационный аппарат глаза (по Гельмгольцу). Левая половина рисунка - в состоянии покоя аккомодации, правая - при ее напряжении

При аккомодации в глазу происходят следующие изменения:

1. Хрусталик меняет свою форму неравномерно: передняя его поверхность, особенно центральная часть, изменяется сильнее, чем задняя.

2. Глубина передней камеры уменьшается вследствие приближения хрусталика к роговице.

3. Хрусталик опускается книзу за счет провисания на расслабленной связке.

4. Суживается зрачок в связи с общей иннервацией ресничной мышцы и сфинктера зрачка от парасимпатической ветви глазодвигательного нерва. Диафрагмирующий эффект суженного зрачка, в свою очередь, увеличивает четкость изображения близко расположенных предметов.

5. Происходит конвергенция обоих глаз.

Рефракцию глаза в состоянии покоя аккомодации называют статической, а при ее напряжении - динамической.

Аккомодация характеризуется областью и объемом аккомодации. Область (длина) аккомодации - это пространство, в пределах которого возможно ясное зрение на разных расстояниях благодаря аккомодации.

Дальнейшая тонка ясного зрения (puncrum remotum) - это точка в пространстве, в которой сохраняется ясное зрение при максимальном расслаблении аккомодации, а ближайшая точка ясного зрения (punctum proximum) - это точка, в которой сохраняется ясное зрение при максимальном напряжении аккомодации. Отрезок между ними - это область, или длина, аккомодации. Ее определяют в линейных мерах по разнице отстояния от глаза дальнейшей и ближайшей точки ясного зрения.

Объем аккомодации (ширина, сила аккомодации) характеризуется разницей в преломляющей силе оптической системы глаза при переводе взгляда от дальнейшей к ближайшей точке ясного зрения.

Объем аккомодации в диоптриях определяется по формуле

А = 1/р - 1/r = Р - R,

где r и р - расстояние от глаза до дальнейшей и ближайшей точки ясного зрения; Р и R - соответствующие им величины рефракции в диоптриях.

Аккомодация каждого глаза в отдельности называется абсолютной, аккомодация глаз при определенной конвергенции зрительных осей - относительной. При бинокулярном зрении перемещение точки ясного зрения из бесконечности, когда зрительные оси обоих глаз параллельны, на какое-то конечное расстояние сопровождается пересечением зрительных осей обоих глаз в конечной точке. Для этого необходима конвергенция глазных яблок. Чем ближе к глазу ближайшая точка ясного зрения, тем больший нужен объем аккомодации и тем сильнее должна быть конвергенция глазных яблок.

Относительная аккомодация всегда меньше абсолютной, что связано с некоторым удлинением анатомической оси глаза при конвергенции из-за давления на глаз наружных глазных мышц.

Различают положительную и отрицательную часть относительной аккомодации: отрицательная - это часть, которая затрачивается при зрительной работе глаза, положительная - это резерв аккомодации.

Для длительной работы на близком расстоянии без утомления глаз большое значение имеет правильное соотношение обеих частей. Глаз быстро утомляется, если затрачивается вся аккомодация (и положительная, и отрицательная). Для комфортной работы на близком расстоянии необходимо, чтобы положительная часть относительной аккомодации была примерно в 2 раза больше ее отрицательной части (рис. 2).

Рис. 2. Положение дальнейшей и ближайшей точки ясного зрения при эмметропии (а), гиперметропии (б) и миопии (в)

Патология аккомодации

Паралич аккомодации возникает при поражении глазодвигательного нерва вследствие заболевания, отравления, травмы или воздействия медикаментов.

Перегрузка аккомодационного аппарата приводит к аккомодативной астенопии или спазму аккомодации.

Аккомодативная астенопия (зрительное утомление) наблюдается при некорригированной гиперметропии, астигматизме и пресбиопии. Возникает вследствие пареза ресничной мышцы, который сопровождается уменьшением объема аккомодации.

Аккомодативная астенопия характеризуется появлением при работе на близком расстоянии болевых ощущений в области переносицы и висков, головной болью, ухудшением зрения при чтении и рассматривании предметов; иногда наблюдаются общие явления в виде тошноты и даже рвоты.

Спазм аккомодации возникает в результате длительного напряжения ресничной мышцы и проявляется усилением рефракции глаза - развивается ложная эмметропия или миопия. Спазм аккомодации характеризуется снижением остроты зрения вдаль, головной болью, утомляемостью при чтении; при циклоплегии наблюдается ослабление рефракции.

Лечение аккомодативной астенопии и спазма аккомодации состоит в правильной рациональной коррекции аномалий рефракции и пресбиопии, общеукрепляющем лечении, режиме зрительных нагрузок.

Жабоедов Г.Д., Скрипник Р.Л., Баран Т.В.

Аккомодацией называют специфическую настройку оптики глаза на определенное расстояние до видимого объекта. Аккомодация обеспечивается изменением кривизны хрусталика, точнее передней хрусталиковой поверхности. Возможность изменять кривизну, зависит от эластичности самого хрусталика и сил, которые действуют на его капсулу.

Как происходит аккомодация

Сила упругости, присущая цилиарному аппарату, сосудистой оболочке глаза и склере, воздействуют на капсулу хрусталика посредством волокон цилиарного пояска одноименной мышцы. Механическое натяжение склеры в свою очередь обеспечивается внутриглазным давлением. Таким образом, при усилении натяжения волокон пояска, хрусталик растягивается и становится более плоским. Воздействие на хрусталик глаза указанной силы под действием окружающей его цилиарной мышцы, чьи волокна ориентированы по окружности, а также в радиальном и меридиональном направлениях, изменяется. Иннервацию этих мышечных волокон, обеспечивают вегетативные парасимпатические нервы. При сокращении цилиарной мышцы, происходит противодействие ее силам упругости, влияющим на хрусталик посредством волокна цилиарного пояска и натяжение хрусталиковой капсулы уменьшается. Это становится причиной увеличения кривизны передней поверхности хрусталика, что повышает и его преломляющую способность. Таким образом, хрусталик оказывается вовлечен в процесс аккомодации.

При расслаблении цилиарной мышцы, кривизна хрусталика, а значит и преломляющая его способность уменьшаются. Здоровый глаз, в подобном состоянии, выдает на сетчатку четкое изображение, удаленных на бесконечное расстояние объектов. Главный стимул для изменения аккомодации - это нечеткость появляющихся на сетчатке изображения, информация о которых поступает к нейронам в зрительную зону коры головного мозга.
На определенном месте, хрусталик удерживают выросты цилиарного тела. Они его фиксируют, а также обеспечивают хрусталику определенную степень натяжения. Такому натяжению призвана противостоять эластичность хрусталиковой капсулы. То есть, при уменьшении натяжения, хрусталиковая капсула сокращается, округляя хрусталик. Именно в этом и заключается суть процесса аккомодации.

Нарушения аккомодации

Изменение натяжения волокон цилиарного тела, делают хрусталик более выпуклым или уплощают его обеспечивая фокусировку глаза на разные расстояния. Если глаз не способен сфокусироваться на удаленном объекте, речь идет о нарушении аккомодации - близорукости (миопии), а когда возникает трудность с фокусировкой на близких объектах, говорят о дальнозоркости (гиперметропии).

В процессе жизни, хрусталиковая капсула все больше утрачивает свою эластичность. Это негативно отражается на способности глаза фокусироваться на близко расположенных объектах. Так при средней оптической силе хрусталика глаза десятилетнего ребенка в 14 диоптрий, у сорокалетних людей этот показатель составляет уже 6 диоптрий, а у шестидесятилетних снижается до 1 диоптрии.

Другой тип дефекта фокусировки - это астигматизм. При астигматизме, оптическая система глаза, фокусирует вместо точки линию. Это обусловлено тем, что одна либо обе преломляющие поверхности, наряду с общей сферической кривизной, имеют цилиндрическую составляющую. Как правило, за данный дефект ответственна роговица глаза. Астигаматизм, наряду с оптическими дефектами хрусталика, подлежит обязательной коррекции.

Как уже отмечалось, с возрастом наступает склерозирование капсулы хрусталика и она утрачивает былую эластичность. Это становится причиной не только снижения ее силы, но и способности изменять фокус. Старческая неспособность к фокусировке хрусталика, получила название пресбиопии - возрастной дальнозоркости. Пресбиопия является одной из неизбежных неприятностей в нашей жизни, наступление которой происходит у всех. Еще одна неприятность, зачастую возникающая в преклонном возрасте - это катаракта.

Один из ведущих офтальмологических центров Москвы в котором доступны все современные методы хирургического лечения катаракты. Новейшее оборудование и признанные специалисты являются гарантией высоких результатов.

"МНТК им.Святослава Фёдорова" - крупный офтальмологический комплекс "Микохирургия глаза" с 10 филиалами в различных городах Российской Федерации, основанный Святославом Николаевичем Федоровым. За годы своей работы помощь получили более 5 млн. человек.

Цветовое зрение . Глазное яблоко воспринимает световые лучи в коротком диапазоне, видимом спектре волн - 300-800 нм.

Излучение с короткими волнами меньше 300 нм вызывает повреждение тканей на молекулярном уровне. Это ультрафиолетовые, рентгеновские лучи, гамма-излучение. Инфракрасные длинные лучи с диапазоном выше 900 нм также не воспринимаются органом зрения, так как они излучаются всеми нагретыми телами, в том числе и животным организмом. Поэтому глазное яблоко воспринимает световые лучи только в коротком диапазоне - видимом спектре волн - 300-800 нм. Трёхкомпонентную теорию цветового зрения разработал М. В. Ломоносов. В последующем она была доработана Юнгом и Гельмгольцем. По этой теории, в колбочках находится три вида пигмента, которые раздражаются при попадании на них световых волн разной длины. Это не значит, что при раздражении, например, красным цветом пигмента происходит возбуждение одного рецептора, раздражаются все рецепторы, но не в одинаковой степени. В большей степени возбуждается рецептор, чувствительный к красному цвету, в меньшей - к зелёному и слабей - к фиолетовому цвету. При одинаковом возбуждении трёх рецепторов возникает белый цвет.

Цветовое зрение трехсоматичное. При смешении трех основных цветов - желтого, синего, красного - можно получить различные цвета. Например, если освещать один глаз зеленым цветом, другой красным, то возникнет ощущение желтого цвета. Цветовое зрение присутствует у рыб, ящериц, черепах, лягушек. Лошади различают красный, желтый, зеленый и фиолетовый, крупные жвачные - красный, жёлтый и синий цвета. У собак слабое цветовое зрение. Они не различают цветовых оттенков, цветовое зрение рудиментарное, нестойкое. В глазном дне отсутствует желтое пятно, палочки и колбочки представлены в небольшом количестве (Школьник-Яррос Е. Г., 1962). Собаки хорошо различают только оттенки серого цвета. Отсутствует цветное зрение у мышей и кроликов. Глазное яблоко воспринимает световые видимые волны с диапазоном от 300 до 800 нм. Свет распространяется в виде волн различной длины, измеряемой в нанометрах. Глаз воспринимает волны света длиной 4·10 -5 см и частотой 7,5·10 14 - 3,75·10 14 Гц. На одном конце спектра находится красный свет с длиной волны 800 нм, на другом фиолетовый с длиной волны 400 нм. У пчелы диапазон воспринимаемого излучения составляет 300-600 нм, у человека - от 400 до 750 нм. У обитателей водной среды более узкий диапазон: 500-600 нм, это спектр сине-зеленой области. Это связано с тем, что идет сильное поглощение излучения водой.

Дихромазия - врожденное расстройство цветового зрения. Развивается вследствие ослабления или выпадения цветоощущаемого компонента. При отсутствии красноощущающего компонента - протанопия, зеленоощущающего - дейтеранопия, синеощущающего - тританопия. По трехкомпонентной теории цвета в сетчатке располагаются три вида колбочек, которые возбуждаются в краснооранжевом, второй - в зеленом, третий - в сине-фиолетовом цвете. Дневное (фотопическое) характеризуется высокой остротой зрения и цветоощущением.

Мезопическое зрение - функционирование колбочек и палочек.

Скотопическое зрение - зрение возникает благодаря работе палочек. Данные виды зрения функционируют при различной степени освещенности.

Острота зрения - способность глаза различать мелкие объекты. Она зависит от плотности ганглиозных клеток. Чем больше их на единицу площади, тем более мелкие детали изображения различимы. Животные, особенно хищные птицы, воспринимают раздельно большое число раздражений в секунду. Человек воспринимает зрительные образы, следующие друг за другом не чаще 10 в 1 секунду. Возникшее возбуждение в зрительном центре исчезает не сразу, а через некоторое время. Если перед глазами проходит 16-18 образов, возникает плавное изображение. Это происходит вследствие того, что раздражение одного образа не успевает исчезнуть, как наступает раздражение от следующего. На остроту зрения влияют глазные мышцы, воздействующие на глазное яблоко и участвующие в пассивной аккомодации.

Аккомодация - способность глаза фокусировать на сетчатке световые лучи, отраженные от рассматриваемых предметов. Невозможно ясно видеть предметы, располагающиеся на разном расстоянии от глаза. Видение одних предметов происходит отчетливо, других расплывчато. Глаз постоянно находится в процессе аккомодации. При рассмотрении предмета, расположенного вблизи, цилиарные мышцы сокращаются, растягивая при этом хрусталик. При рассмотрении дальних предметов цинновы связки расслаблены, хрусталик утолщается. Благодаря эластическому сухожилию мышцы после сокращения приходят в исходное состояние. Атрофия мышечных волокон и замена соединительной тканью приводит к ослаблению аккомодации при пресбиопии. Изменение аккомодации с близкого расстояния на дальнее происходит быстрее, чем при переводе с дальнего на близкое.

В природе существует три типа аккомодации.

Передвижение хрусталика вдоль оси глаза . Данная аккомодация присуща рыбам. Хрусталик в глазу располагается так, что фокус преломленных лучей совпадает с сетчаткой. При приближении предмета изображение удаляется за сетчатку. Для ясного видения хрусталик круглой формы продвигается вперед до тех пор, пока фокус не совпадет с сетчаткой. Для перемещения хрусталика в глазном яблоке существует специальная мышца.

Активное изменение хрусталика . Такая аккомодация существует у птиц, которые нуждаются в сильной аккомодации. Для активного воздействия на хрусталик имеется костное кольцо с прикрепленной к нему поперечно-полосатой кольцевой мышцей. При сокращении мышцы кривизна хрусталика резко увеличивается. Сила аккомодации в данном случае увеличивается на 50 Д. В толще стекловидного тела находится гребень, простирающийся от зрительного нерва до капсулы хрусталика.

Пассивный тип аккомодации . Во время покоя цилиарные мышцы, цинновы связки натянуты, при сокращении цилиарной мышцы расслабляются цинновы связки, хрусталик становится выпуклым.

Рыбы и амфибии, приспособленные к водной среде, хуже видят на большие расстояния, так как вода плохо пропускает свет. Поэтому у рыб, земноводных, ракообразных и головоногих моллюсков зрительные структуры развиты слабо. У рыб глаз установлен на близкое видение предмета. При аккомодации шарообразный хрусталик рыбы оттягивается назад при помощи специальной оттягивающей мышцы. У рептилий аккомодация осуществляется за счет изменения формы хрусталика специальной мышцей, а для бинокулярности зрения конвергенция осуществляется глазодвигательными мышцами (Константинов А. И., Соколов В А., 1980). У земноводных глаз установлен на дальнее видение, поэтому для ближнего видения предмета хрусталик продвигается вперед. У птиц и млекопитающих аккомодация происходит за счет изменения формы хрусталика. У амфибий, благодаря переходу к наземному существованию, возникла потребность к установке глаза на дальнозоркость. Отрицательная аккомодация сменяется положительной. Появляется аккомодационный аппарат глаза, веки и новая мышца - отгягиватель (Терентьева П. В., 1950; Огнев С. И., 1953).

На степень аккомодации влияют следующие факторы:

  • Возрастные изменения хрусталика.
  • Изменение биохимического состава хрусталика.
  • Состояние цилиарного тела.

С возрастом в цилиарной мышце и цинновых связках развиваются склеротические изменения, что ведет к снижению сократительной способности. При этом ослабляется подвижность хрусталика, что приводит к ослаблению рефракции пресбиопии.

Ближайшая точка ясного видения (punctum praximum) - расстояние, при котором глаз отчетливо различает предмет.

Дальнейшая точка ясного видения (punctum remotum) - это максимальное расстояние, при котором глаз отчетливо воспринимает предмет.

Длина аккомодации - пространство между ближайшей и дальнейшей точкой ясного зрения.

Рефракция - способность оптической системы глаза преломлять параллельные лучи и собирать в одной точке. Преломляющая сила оптической системы измеряется диоптрией. Одна диоптрия равна преломляющей силе стекла с фокусным расстоянием в 1 м. Д = 1/F.

Нормальная рефракция. Эмметропия фокус параллельных лучей после преломления оптической системы глаза попадает на сетчатку. Ненормальная рефракция. Аметропия - рефракция, при которой фокус преломления лучей не совпадает с сетчаткой.

Форма глазного яблока зависит от вида животного, от степени рефракции. Шаровидные глаза эмметропичные, при миопии по форме удлиненные и приближаются к сжатым эллипсоидам. При прогрессировании близорукости наблюдается растяжение, истончение фиброзной капсулы. Растягивается задний отдел склеры (Должич Г. И., Шурыгина И. П., Шаповалова В. М., 1991). Гиперметропия - фокус располагается за сетчаткой, такие животные хорошо видят вдали и хуже вблизи. Данная рефракция возможна в случае укорочения зрительной оси, например при уменьшенном глазном яблоке. Гиперметропия также развивается при уменьшении рефракционной способности хрусталика его отсутствием или уплощением.

Миопия - фокус лучей располагается перед сетчаткой. Это связано с усилением преломляющей силы оптических сред глаза. Такая рефракция развивается в следующих случаях: глазное яблоко увеличено по сравнению с нормой, при этом увеличивается глазная ось. Увеличение зрительной оси глаза возникает при патологии роговицы: кератоконусе, кератоглобусе.

При миопии на сетчатке возникает круг светорассеивания. При дальнозоркости параллельные лучи собираются сзади сетчатки, а на ней расплывчатое изображение предмета. При прогрессирующей близорукости растет корнеосклеральная капсула глаза, происходит неравномерное растяжение фиброзной капсулы, растягивается задний отдел склеры. С возрастом хрусталик теряет способность аккомодировать. Становится более выпуклым (Сергиенко Н. М., Лаврик Ю. Н., 1987). Форма глазного яблока зависит от вида животного, от степени рефракции. Шаровидные глаза эмметропичные, при миопии по форме удлиненные и приближаются к сжатым или вытянутым эллипсоидам. При прогрессировании близорукости наблюдается растяжение, истончение фиброзной капсулы.

При пресбиопии длина глазного яблока остается неизменной. Ближняя точка отодвигается от глаза в связи с изменением эластичности хрусталика, ослаблением цинновых связок. Пресбиопия связана со старческими изменениями, происходящими в глазном яблоке. Ослабляется действие цинновых связок, цилиарного тела, в хрусталике формируется ядро, паренхима мутнеет. При пресбиопии теряется способность глаза аккомодировать на близкие расстояния.

Такое нарушение аккомодации отмечается у собак к 8-10 годам, крупного рогатого скота - к 10 годам.

Анизометропия - ненормальная рефракция. Она возникает при различном сочетании различных видов рефракций. Один глаз может быть эмитропом, другой - гиперметропом и т. д. По данным В. Н. Авророва, А. В. Лебедева (1985), 10% животных страдают анизометропией. Из них на эмметропию - миотропию приходится 17%, эмметропию - гиперметропию - 2,2%, миопию - гиперметропию - 0,3%.

Астигматизм - ненормальная рефракция. При астигматизме радиус кривизны роговицы в различных меридианах неодинаковый. Внутренняя поверхность роговицы имеет большую кривизну, чем наружная. Так как кривизна по горизонтальному меридиану роговицы больше, чем по вертикальному, то лучи, пройдя по горизонтальному меридиану, преломляются сильнее. При выпукл ой форме роговицы толщина в центре меньше, чем в периферических областях. Кривизна роговицы больше выражена по вертикали, чем по горизонтали. При астигматизме параллельные лучи не пересекаются в одной точке. При эмметропии поток света после прохождения оптических сред имеет форму конуса. При астигматизме поток лучей в форме неправильного конуса. Неодинаковая толщина роговицы возможна при рубцовом стягивании. При этом краевые лучи преломляются роговицей сильнее, чем центральные.

Классификация . Правильный астигматизм - преломляющая сила роговицы одинаковая по всему меридиану. Неправильный - сила преломления в меридианах неодинаковая. Прямой - сильная рефракция в вертикальном меридиане, обратный - в горизонтальном. Простой - в одном из меридианов эмметропия, в другом аметропия. Астигматизм присутствует в большей или меньшей степени в эмметропическом глазе. Коррекция астигматизма происходит за счет радужной оболочки, которая ограничивает попадание краевых лучей. Наиболее заметно это проявляется у животных, имеющих радужную оболочку овальной формы.

Сферическая абберация . При данной аккомодации глаза лучи, проходящие на центр глаза, преломляются сильнее, чем те, которые попадают на периферию.

Хроматическая абберация . Лучи с различной длиной волны не собираются в фокусе.

Бинокулярное зрение . Положение глаз определяется размерами углов между оптическими осями в горизонтальной и вертикальной плоскостях. У волка, например, в первом случае этот угол равен примерно 55°, во втором - 165°. Величина бинокулярного зрения волка достаточно большая - около 70°, тогда как общее поле обзора сравнительно невелико (Бибиков Д. И., 1985).

У куньих угол бинокулярного зрения равен 55-65°, у медведей 80-85°. Очень велико это поле у кошачьих (130°), поскольку зрительные оси обоих глаз почти параллельны (Ф. В. Андреев).

Угол между зрительными осями меньше всего у человека и обезьян, у которых оси почти параллельны, у льва угол равен 10°, у кошки - 14-18°, у собаки - 30-50°, у зайца - 170°. Глазные оси обоих глаз лошади, конвергируя, образуют угол в 137°, крупного рогатого скота - 119°, овцы - 134°, свиньи - 118°, собаки - 92,5°, кошки - 77° (Климов А. Ф., АкаевскийА. И., 1934).

У кролика зрение является в основном монокулярным, то есть он видит порознь обоими глазами (поле монокулярного зрения около 190°). Бинокулярное зрение у него почти не развито: наложение поля зрения одного глаза на поле зрения другого спереди происходит лишь на 27°. Оба поля зрения накладываются несколько друг на друга сзади (9°), что обеспечивает полный круговой обзор (Жеденов В. Н., Бигдан С. С., 1957).

Положение глаз, их величина и величина углов полей зрения связаны со способом добывания пиши и мест обитания. Смещение глаз во фронтальную плоскость позволяет легче обнаружить добычу (Андреев Ф. В., 1968; Стрельников И. Д., 1970). Постановка глаз напрямую зависит от вида зрения данного животного. У травоядных глаза смотрят в стороны (латерально), у обезьян и человека вперёд (фронтально), у собак - занимают промежуточное положение. Латеральное расположение глаз даёт обширное поле зрения, при фронтальном - меньше, но зато животное получает другое преимущество - бинокулярное зрение (Абрикосов Г. Г., 1961). Латеральное зрение травоядных не может обеспечить целенаправленный зрительный поиск, присущий человеку (Подвигин Н. Ф., Макаров Ф. Н., 1986). Форма, размер желтого пятна зависят от образа жизни животного и положения глаз на голове. У животных с фронтальным расположением глаз (приматы, хищные) желтое пятно округлой формы, площадью 0,5 мм 2 . Животные с унилатеральным зрением имеют желтое пятно в форме горизонтально вытянутой полоски. Дельфины как водные животные воспринимают изображение как в воде, так и на суше. В соответствии с этим они имеют два желтых пятна. Для восприятия света зрачок на свету формирует дугообразную щель, которая, смыкаясь, образует два зрачковых отверстия (Масс А. М., 1997). Поэтому дельфины хорошо видят как под водой, так и на воздухе, чего нельзя сказать о рыбах, глаза которых приспособлены к зрению только в воде. Ширина поля зрения неодинакова у различных пород. На него оказывают влияние строение черепа, расположение глаз, форма и размер носа. У широкомордых собак с коротким носом (пекинес, мопс) глаза расходятся под малым углом. У узкомордых собак с вытянутым носом (борзых) оси глаз расходятся под большим углом. Глаза собаки расположены так, что оптические оси расходятся на 20°. Суммарное поле зрения составляет 240-250°, что на 60-70° больше, чему человека. Как указывает Д. И. Бибиков, смещение роговицы и зрачка у хищных от центральной оси приводит к усилению роли бинокулярного зрения. Бинокулярное зрение - это объемное видение предмета обоими глазами. При рассмотрении предмета одним глазом изображение представляется в плоском изображении. Когда оба изображения проецируются на идентичные (корреспондирующие), светочувствительные клетки сетчатки, возникает одно изображение. Каждая точка одной сетчатки имеете другой сетчатке свою корреспондирующую точку. Диспаратные точки не одинаковые по расположению. Изображение диспаратных точек передается на различные участки коры головного мозга.

Для осуществления бинокулярного зрения необходима конвергенция - глаза при этом поворачиваются навстречу друг к другу для удержания предмета в центральной ямке сетчатки. При конвергенции необходима согласованная работа наружных мышц глаза, при этом возникает слияние изображений (фузия) на соответствующих участках сетчатки каждого глаза. Стереоэффект образуется в том случае, когда изображение предмета на сетчатке имеет асимметрию. Каждый глаз видит предмет прямо и сбоку. При рассмотрении объекта формируются два сходных, чуть различающихся предмета. Оба поля зрения сетчатки на 2/3 между собой совмещены. Для бинокулярного зрения необходимо параллельное расположение зрительных осей глаза (дивергенция), при этом световые лучи попадают на центры сетчатки. Это возможно, если орбита глаза располагается в одной плоскости - как у кошек, человека, обезьяны. Смещение глаз во фронтальную плоскость позволяет животному легче обнаружить добычу. Конвергенция - глаза поворачиваются навстречу друг к другу для удержания изображения в центральной ямке сетчатки. При удалении предмета глаза расходятся друг от друга. Комбинированное зрение имеют, как отмечает К. А. Фомин (1968), лошади, рогатый скот, олени. Для бинокулярного зрения, четкого видения предметов они поворачивают голову, верблюды поднимают голову до горизонтальной линии. Предмет рассматривается у животных с латеральным наклоном головы монокулярно и мгновенно - бинокулярно. Немаловажный фактор в создании объемного изображения - попадание светового сигнала на корреспондирующие, или идентичные, точки обеих сетчаток. Неидентичные точки, или диспарантные, передаются в различные участки головного мозга и воспринимаются как различные точки. В этом случае возникает раздвоение изображения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вопросы в начале параграфа.

Вопрос 1. В чем уникальность зрения?

Уникальность зрение по сравнению с другими анализаторами состоит в том, что оно позволяет не только опознавать предмет, но и определять его место в пространстве, следить за перемещениями.

Вопрос 2. Как защищено глазное яблоко? Каково его строение?

Спереди глаз защищен веками, ресницами и бровями. Снаружи глазное яблоко заключено в белочную оболочку, или склеру, которая в передней части переходит в прозрачную роговицу. Это самая сильная «линза» глаза.

За склерой находится сосудистая оболочка.

Она черная, благодаря чему свет внутри глаза не рассеивается. В передней части глаза сосудистая оболочка переходит в радужную. Цвет радужной оболочки и определяет цвет глаз.

В середине радужной оболочки находится круглое отверстие - зрачок.

Вопрос 3. Какую функцию выполняют глазные мышцы?

Благодаря клеткам гладкой мышечной ткани зрачок может расширяться и суживаться, пропуская количество света, необходимое для рассмотрения предмета.

Вопрос 4. Как функционирует зрительный анализатор в целом?

Зрительный анализатор не только позволяет воспринимать объемное изображение, поскольку одновременно охватывается и левая, и правая части объекта, но и определять расстояние до него. Чем дальше предмет, тем мельче его изображение на сетчатке. Это помогает нам определять расстояние до предмета.

Вопросы в конце параграфа.

Вопрос 1. Какие функции выполняют брови, ресницы, веки, слезные железы?

Брови защищают глаза от стекающих по лбу капелек пота, ресницы и веки защищают глаза от попадания инородных частиц (пыли, песчинок, мошек и др.). Слезные железы и верхние веки защищают глаза от осушения.

Вопрос 2. Что такое зрачок? Каковы его функции?

Зрачок - круглое отверстие, которое находится в центре радужной оболочки и расширяется или сужается в зависимости от освещения. При помощи изменения диаметра зрачка глаз регулирует поступающий поток света.

Вопрос 3. Как работает хрусталик?

Хрусталик располагается позади зрачка и прилегает к радужной оболочке. К нему подходит ресничная мышца, которая изменяет его кривизну. Благодаря изменению кривизны хрусталика световые лучи, отраженные от предметов, расположенных на разных расстояниях от глаза, фокусируются на сетчатке, чем обеспечивается четкое их изображение.

Вопрос 4. Где располагаются колбочки и палочки? Каковы их свойства?

Колбочки и палочки - рецепторные клетки глаза, располагаются на сетчатке. Палочки сравнительно равномерно распределены по ней, колбочки же имеют сосредоточение в районе желтого пятна, которое находится прямо напротив зрачка. Палочки способны очень быстро возбуждаться уже при слабом сумеречном свете, но они не могут воспринимать цвет. Колбочки возбуждаются при ярком свете, но гораздо медленнее, и способны воспринимать цвет.

Вопрос 5. Из каких частей состоит зрительный анализатор и как работает его корковая часть?

Зрительный анализатор состоит из зрительного рецептора (глаза), зрительного нерва и зрительной зоны коры больших полушарий, расположенной в затылочной доле. В зрительных рецепторах энергия света превращается в нервные импульсы. Нервные импульсы по волокнам зрительного нерва попадают в мозг. Зрительные пути устроены так, что левая часть поля зрения от обоих глаз попадает в правое полушарие коры большого мозга, а правая часть поля зрения - в левое. Изображения от обоих глаз попадают в соответствующие мозговые центры и создают объемное единое изображение.