Апоптоз. Определение

Апоптоз. Определение
Апоптоз. Определение

1) Рецепторный. Осуществляется с помощью «рецепторов смерти» при активирующем взаимодействии с соответствующими лигандами, большинство из которых относится к суперсемейству фактора некроза опухолей. Взаимодействие рецептора с лигандом приводит к активации адапторных белков, ассоциированных с «доменами смерти» (FADD - Fas-associated death domain, TRADD - TNF-R-associated death domain), и прокаспазы 8, продукт которой - каспаза 8 (инициаторная) активирует каспазу 3 (эффекторную), что, в свою очередь, обусловливает активацию эндонуклеаз, фрагментирующих ДНК.

2) Митохондриальный. Участие митохондрий в апоптозе обеспечивается присутствием в их матриксе и межмембранном пространстве большого количества биологически активных веществ (цитохрома С (Cyt С); прокаспаз 2, 3, 9; апоптозиндуцирующего фактора (AIF), обладающих выраженным апоптогенным действием. Фактором активации апоптоза является выход данных веществ в цитоплазму при снижении трансмембранного потенциала митохондрий вследствие открытия гигантских митохондриальных пор (выполняют роль Ca 2 +-, рН-, потенциал-, НАДФ2Н/НАДФ+- и редоксзависимых каналов) и повышения проницаемости митохондриальных мембран. К раскрытию пор приводят истощение в клетках восстановленного глутатиона, НАДФН, АТФ и АДФ, образование активных форм кислорода, разобщение окислительного фосфорилирования, увеличение содержания Ca 2 + в цитоплазме. Поступление межмембранных белков и активация апоптоза возможны также при разрыве наружной мембраны митохондрий вследствие гиперполяризации внутренней мембраны.

3) р53-опосредованный. p53 - многофункциональный белок, играющий важную роль в мониторинге сигналов о состоянии клетки, целостности ее генома, активности систем ДНК-репарации. Повреждение ДНК ведет к накоплению белка р53 в клетке. Это определяет остановку клеточного цикла в фазах G 1 и G 2 , предотвращает репликацию, активирует синтез и репарацию ДНК, а следовательно, создает условия для восстановления нативной структуры ДНК, препятствует появлению мутантных и анеуплоидных клеток в организме. В случае если имеется недостаточность систем ДНК-репарации и повреждения ДНК сохраняются, клетка подвергается апоптозу. В частности, белок р53 способен индуцировать транскрипцию таких апоптогенных факторов, как Bax, Fas- рецептор, DR-5 и др.

4) Перфорин-гранзимовый. Цитотоксические Т-лимфоциты (Т-киллеры) вызывают апоптоз клеток-мишеней (например, инфицированных клеток) с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клеткимишени трансмембранные каналы, по которым внутрь клетки поступают секретируемые Т-киллером гранзимы (фрагментины) - смесь сериновых протеаз. Основным компонентом этой смеси является гранзим В - протеолитический фермент, активирующий каспазу 3.

Значение белков-регуляторов апоптоза в развитии организма и патологических процессах

    Вcl-2 требуется для поддержания жизнеспособности лимфоцитов, меланоцитов, эпителия кишечника и клеток почек во время развития эмбриона.

    Вcl-x необходим для ингибирования смерти клеток в эмбриогенезе, особенно в нервной системе.

    Bax необходим для апоптоза тимоцитов и поддержания жизнеспособности сперматозоидов во время их развития.

    р53 является геном супрессии опухолей, поэтому в эмбриогенезе особой роли не играет, но обязательно необходим для супрессии опухолевого роста.

    Усиленный синтез белка, кодируемого bcl-2 геном, приводит к подавлению апоптоза и, соответственно, развитию опухолей; данный феномен обнаружен в клетках В-клеточной фолликулярной лимфомы.

    При лимфопролиферативных заболеваниях и похожей на системную красную волчанку болезни у мышей наблюдается нарушение функции Fas-лиганда или Fas-рецептора.

    Повышенный синтез Fas-лиганда предупреждает отторжение трансплантата.

Апоптоз является частью патологического процесса при инфицировании клетки аденовирусами, бакуловирусами, ВИЧ и вирусами гриппа.

Ингибирование апоптоза в клетке-хозяине наблюдается при персистировании инфекции, в латентном периоде, а при усиленной репликации аденовирусов, бакуловирусов, возможно герпесвирусов, вируса Эпштейн-Барра и ВИЧ наблюдается активация апоптоза в клетках иммунной системы, что способствует распространению вируса.

Инициация апоптоза может происходить посредством внешних или внутриклеточных факторов. Например, в результате гипоксии, гипероксии, субнекротического поражения химическими или физическими агентами, перекрёстного связывания соответствующих рецепторов, нарушения сигналов клеточного цикла, удаления факторов роста и метаболизма и т. д. Несмотря на разнообразие инициирующих факторов, выделяются два основных пути трансдукции сигнала апоптоза: рецептор-зависимый сигнальный путь с участием рецепторов гибели клетки и митохондриальный путь.

Рецептор-зависимый сигнальный путь

Схема передачи сигналов апоптоза при посредстве рецепторов смерти CD95, TNFR1 и DR3

Процесс апоптоза часто начинается с взаимодействия специфических внеклеточных лигандов с рецепторами клеточной гибели, экспрессированными на поверхности клеточной мембраны. Рецепторы, воспринимающие сигнал апоптоза, относятся к суперсемейству TNF-рецепторов. Наиболее изученными рецепторами смерти, для которых описана и определена роль в апоптозе, являются CD95 и TNFR1. К дополнительным относятся CARI, DR3, DR4 и DR5.

Все рецепторы смерти представляют собой трансмембранные белки, характеризующиеся наличием общей последовательности из 80 аминокислот в цитоплазматическом домене. Данная последовательность называется доменом смерти и является необходимой для трансдукции сигнала апоптоза. Внеклеточные участки рецепторов смерти взаимодействуют с тримерами лигандов. Тримеры лигандов в результате взаимодействия тримеризуют рецепторы смерти. Активированный таким образом рецептор взаимодействует с соответствующим внутриклеточным адаптером. Для рецептора CD95 адаптером является FADD. Для рецепторов TNFR1 и DR3 адаптером является TRADD.

Адаптер, ассоциированный с рецептором смерти, вступает во взаимодействие с эффекторами — пока ещё неактивными предшественниками протеаз из семейства инициирующих каспаз — с прокаспазами. В результате цепочки взаимодействия «лиганд-рецептор-адаптер-эффектор» формируются агрегаты, в которых происходит активация каспаз. Данные агрегаты именуются апоптосомами, апоптозными шаперонами или сигнальными комплексами индуцирующими смерть. Примером апоптосомы может служить комплекс FasL-Fas-FADD-прокаспаза-8, в котором активируется каспаза-8.

Рецепторы смерти, адаптеры и эффекторы взаимодействуют между собой сходными по структуре доменами: DD, DED, CARD. DD участвует во взаимодействии рецептора Fas с адаптером FADD и во взаимодействии рецепторов TNFR1 или DR3 с адаптером TRADD. Посредством домена DED осуществляется взаимодействие адаптера FADD с прокаспазами −8 и −10. Домен CARD участвует во взаимодействии адаптера RAIDD с прокаспазой-2.

Посредством рецепторов смерти могут быть активированы три инициирующие каспазы: −2; −8 и −10. Активированные инициирующие каспазы далее участвуют в активации эффекторных каспаз.

Митохондриальный сигнальный путь

Митохондриальный сигнальный путь апоптоза реализуется в результате выхода апоптогенных белков из межмембранного пространства митохондрий в цитоплазму клетки. Высвобождение апоптогенных белков, предположительно, может осуществляться двумя путями: за счёт разрыва митохондриальной мембраны или же путём открытия высокопроницаемых каналов на внешней мембране митохондрий.

Модель образования апоптосомы «Цитохром c — Apaf-1 — CARD — прокаспаза-9». Активированная таким образом каспаза-9 рекрутирует прокаспазу-3, которая в свою очередь активируется до каспазы-3

Разрыв внешней мембраны митохондрий объясняется увеличением объема митохондриального матрикса. Данный процесс связывают с раскрытием пор митохондриальной мембраны, приводящим к снижению мембранного потенциала и высокоамплитудному набуханию митохондрий вследствие осмотического дисбаланса. Поры диаметром 2,6-2,9 нм способны пропускать низкомолекулярные вещества массой до 1,5 кДа. Раскрытие пор стимулируют следующие факторы: неорганический фосфат; каспазы; SH-реагенты; истощение клеток восстановленным глутатионом; образование активных форм кислорода; разобщение окислительного фосфорилирования протонофорными соединениями; увеличение содержания Ca в цитоплазме; воздействие церамида; истощение митохондриального пула АТФ и др.

В качестве альтернативного пути выхода апоптогенных белков из межмембранного пространства митохондрий рассматривается вариант образования белкового канала во внешней митохондриальной мембране. Так или иначе, в цитоплазму высвобождаются: цитохром c — белок с молекулярной массой 15 кДа; прокаспазы −2, −3 и −9; AIF — флавопротеин с молекулярной массой 57 кДа.

Цитохром c в цитоплазме клетки участвует в формировании апоптосомы вместе с белком Apaf-1. Предварительно, Apaf-1 претерпевает конформационные изменения в результате реакции, протекающей с затратой энергии АТФ. Предполагается, что трансформированный Apaf-1 приобретает способность связывать цитохром c. К тому же открывается доступ CARD-домена Apaf-1 для прокаспазы-9. В итоге происходит олигомеризация не менее 8 субъединиц трансформированного белка Apaf-1 с участием цитохрома c и прокаспазы-9. Так образуется апоптосома, активирующая каспазу-9. Зрелая каспаза-9 связывает и активирует прокаспазу-3 с образованием эффекторной каспазы-3. Высвобождающийся из межмембранного пространства митохондрий флавопротеин AIF является эффектором апоптоза, действующим независимо от каспаз.

Другие пути индукции апоптоза

Стоит отметить, что реализация апоптоза может происходить в результате комбинированного действия двух основных сигнальных путей — рецептор-зависимого и митохондриального. Помимо этого, существует ряд менее распространённых механизмов инициации апоптоза. Например, за счёт активации прокаспазы-12, локализованной в эндоплазматическом ретикулуме. Высвобождение и активация прокаспазы-12 при этом обусловлены нарушениями внутриклеточного гомеостаза ионов кальция. Активация апоптоза также может быть связана с нарушением адгезии клеток.

В качестве ещё одного фактора индукции апоптоза рассматривается атака инфицированных клеток цитотоксическими Т-лимфоцитами, которые, помимо активации Fas-рецептора, способны секретировать перфорин вблизи мембраны заражённой клетки. Перфорин, полимеризуясь, образует трансмембранные каналы, через которые внутрь клетки поступают лимфотоксин-альфа и смесь сериновых протеаз. Далее гранзим B активирует каспазу-3 и запускается каспазный каскад.

Возможна инициация клеточной смерти при высвобождении лизосомальных протеаз — катепсинов. К примеру, каспаза-8 вызывает выход из лизосом активного катепсина B, который затем расщепляет регуляторный белок Bid. В результате образуется активный белок t-Bid, активирующий в свою очередь проапоптозный белок Bax.

Общая схема «классического» апоптоза млекопитающих

Эффекторная фаза

В течение эффекторной фазы различные инициирующие пути конвертируются в один общий путь апоптоза. Как правило, происходит активация каскада белков-эффекторов и регулирующих их белков-модуляторов. Основными эффекторами апоптоза являются каспазы. В процессе активации они запускают каспазный каскад: сложно переплетённые цепочки взаимодействий инициирующих и эффекторных каспаз.

Каспазный каскад

Каспазы представляют собой цистеиновые протеазы, которые расщепляют аминокислотные последовательности после остатка аспарагиновой кислоты. Каспазы образуются за счёт активации прокаспаз, в составе которых выделяют 3 домена: регуляторный N-концевой домен, большую и малую субъединицы. Активация происходит путём протеолитического процессинга: все три домена расщепляются, отделяется продомен, а оставшиеся большая и малая субъединицы ассоциируются, образуя гетеродимер. Два гетеродимера в дальнейшем формируют тетрамер — полноценную каспазу с двумя каталитическими участками.

Каспазы обнаружены во большинстве живых организмов. У млекопитающих идентифицировано 13 каспаз. Часть из них в апоптозе не участвует. Остальные каспазы, которые участвуют в апоптозе, разделяют на инициаторные и эффекторные. Инициаторные каспазы активируют эффекторные каспазы, которые в свою очередь провоцируют и непосредственно участвуют в трансформации клетки. В итоге морфологические и биохимические изменения приводят к гибели клетки по типу апоптоза.

Одна из основных функций эффекторных каспаз заключается в прямом и опосредованном разрушении клеточных структур. Гидролизу подвергаются белки ядерной ламины, разрушается цитоскелет, расщепляются белки, регулирующие клеточную адгезию. Другой важной функцией эффекторных каспаз является инактивация белков, блокирующих апоптоз. В частности расщепляется ингибитор DFF, препятствующий активации апоптозной ДНКазы CAD. Разрушению подвергаются и антиапоптозные белки семейства Bcl-2. Наконец, в результате действия эффекторных каспаз происходит диссоциация регуляторных и эффекторных доменов, участвующих в репарации ДНК, мРНК-сплайсинга и ДНК-репликации.

Дополнительные эффекторы апоптоза

Помимо каспаз существуют и другие эффекторы апоптоза. Например, флавопротеин AIF, высвобождающийся из межмембранного пространства митохондрий, действует по независимому от каспаз пути. Попадая в клеточное ядро, AIF вызывает конденсацию хроматина и активирует эндонуклеазы, которые участвуют в фрагментации ДНК. На основании экспериментальных данных установлено, что апоптоз, протекающий в присутствии AIF, не предотвращается ингибитором каспаз. В качестве эффекторов апоптоза также рассматриваются кальпаины — представители семейства цитозольных Ca-активируемых цистеиновых протеаз. Их роль в апоптозе пока слабо охарактеризована.

Деградационная фаза

Итогом программируемой клеточной гибели вне зависимости от изначального инициирующего воздействия является деградация клетки путём фрагментации на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро фагоцитируются макрофагами либо соседними клетками, минуя развитие воспалительной реакции.

Морфологические изменения

Условно деградацию погибающей клетки можно разделить на три последовательных фазы: высвобождения, блеббинга и конденсации. Деградация большинства клеток начинается с высвобождения прикреплений внеклеточного матрикса и реорганизации фокальной адгезии. Внутри погибающей клетки деполимеризуются микротрубочки цитоскелета. Внутриклеточные актиновые микрофиламенты реорганизуются в связанные с мембраной периферийные кольцевые пучки. В итоге клетка приобретает округлую форму. Следующая за высвобождением, стадия блеббинга, характеризуется сокращением периферийных актиновых колец. В результате сокращений клеточная мембрана образует вздутия, клетка как бы «кипит». Процесс блеббинга энергозависим и требует большого количества АТФ. Фаза блеббинга в нормальных условиях завершается примерно через час. В итоге клетка фрагментируется на маленькие апоптотические тела, либо целиком конденсируется, округляясь и уменьшаясь в размерах.

Биохимические изменения

На молекулярном уровне одним из последствий апоптоза является фрагментация ДНК с участием нуклеаз. Изначально образуются крупные фрагменты с 30 000-700 000 пар оснований, которые в дальнейшем расщепляются в межнуклеосомной области на отрезки по 180-190 пар оснований или кратные этим величинам. Фрагментация ДНК является характерным, но не обязательным признаком апоптоза, так как существуют наблюдения, в ходе которых процесс фрагментации ядра протекал без сопутствующей фрагментации ДНК.

Ещё одним существенным последствием апоптоза является экспрессия на внешней стороне плазматической мембраны специфических молекулярных маркеров, распознаваемых фагоцитирующими клетками: тромбоспондина; фосфатидилсерина и других фосфолипидов, содержащих фосфосерин.

CAD (caspase activated DNase) на фрагменты размером, кратным 180-200 нуклеотидам . В результате апоптоза происходит образование апоптичних телец - мембранных везикул , содержащих целостные органеллы и фрагменты ядерного хроматина . Эти тельца поглощаются соседними клетками или макрофагами в результате фагоцитоза . Так как внеклеточный матрикс не поражается клеточными ферментами , даже при большом количестве апоптозных клеток, воспаление не наблюдается.

Процесс апоптоза является необходимым для физиологического регулирования количества клеток организма, для уничтожения старых клеток, для формирования лимфоцитов , которые не являются реактивными к своим антигенов (аутоантигенов), для осеннего опадения листьев растений , для цитотоксического действия Т-лимфоцитов киллеров, для эмбрионального развития организма (исчезновение кожных перепонок между пальцами у эмбрионов птиц) и других.

Нарушение нормального апоптоза клеток приводит к неконтролируемому размножению клетки и появления опухоли.


1. Значение апоптоза

Апоптоз - неотъемлемая часть жизнедеятельности большинства многоклеточных организмов. Особенно важную роль он играет в процессах развития. Например конечности четвероногих закладываются как лопатообразные вырасти, а формирование пальцев происходит благодаря гибели клеток между ними. Также подлежат апоптоза больше не нужны клетки, таким образом частности разрушается хвост у головастиков при метаморфозу. В нервной ткани позвоночных во время эмбрионального развития более половины нейронов погибают путем апоптоза сразу же после образования .

Также апоптоз является частью системы контроля за "качеством" клеток, он позволяет разрушать те из них, которые неправильно расположены, поврежденные, нефункциональные или потенциально опасные для организма. Примером могут служить и B-лимфоциты , которые погибают, если не несут полезных антиген -специфических рецепторов или несут автореактивни. Путем апоптоза также умирает большинство лимфоцитов аткивованих при инфекции после его преодоления .

У взрослых организмов одновременная регуляция пролиферации клеток и апоптоза позволяет поддерживать стали размеры целой особи и ее отдельных органов. Например, после вживавання препарата фенобарбитал , что стимулирует пролиферацию гепатоцитов, у крыс увеличивается печень . Однако, сразу же после прекращения действия этого вещества все лишние клетки подлежат апоптоза, в результате чего размер печени возвращается к нормальному .

Также апоптоз происходит, когда клетка "чувствует" большое количество внутренних повреждений, которые она не может репаруваты. Например, в случае повреждения ДНК клетка может трансформироваться в раковую, чтобы этого не произошло она, при нормальных условиях, "кончает жизнь самоубийством". Также погибает путем апоптоза большое количество клеток инфицированных вирусами .


2. Маркеры апоптических клеток

Маркеры апоптоза

Выявление фрагментации ДНК в апоптичних клетках методом TUNEL Препарат ткани печени мыши, ядро апоптичнои клетки имеет коричневую окраску, оптическая микроскопия.

Выявление фрагментации ДНК в апоптичних клетках с помощью электрофореза в агарозном геле. Слева: ДНК выделенной из апоптических клеток - видно "лесенку ДНК"; посередине: маркеры; дело: контрольный образец ДНК из необработанных клеток. Клеточная линия H4IIE (гепатома крыс), индуктором апоптоза - паракват, визуализация с помощью етидий бромида.

Сверху: выявление конденсации и фрагментации хроматина путем закрашивания флуоресцентным красителем (Hoechst 34580). Посередине: выявление транслокации фосфадидилсерину в наружный листок плазмалемме путем закрашивания аннексином V. Снизу: Микрофотография апоптических клеток в светлом поле. Клеточная линия - Jurkat, индуктор апоптоза - TRAIL, конфокальной и свитлопильна оптическая микроскопия .

Клетки, погибают путем апоптоза, можно распознать по ряду морфологических признаков. Они становятся меньше и более плотными (пикноз), округляются и теряют псевдоподии , в них разрушается цитоскелет , распадается ядерная мембрана , хроматин конденсируется и фрагментируется. На поверхности клеток появляется большое количество пузырьков, если клетки достаточно велики, то они распадаются на окружены мембранами фрагменты - апоптические тельца .

В апоптичних клетках кроме морфологических происходит также большое количество биохимических изменений. Частности ДНК разрезается специальными нуклеазами в линкерних участках между нуклеосомы на фрагменты равной длины. Поэтому при разделении всей ДНК апоптичнои клетки с помощью электрофореза можно наблюдать характерную "лесенку". Другой метод выявления фрагментации ДНК - метки ее свободных концов с помощью метода TUNEL ( T erminal deoxynucleotidyl transferase d U TP n ick e nd l abeling ) .

Изменения претерпевает также и плазматическая мембрана апоптичних клеток. При нормальных условиях отрицательно заряженный фосфолипид фосфатидилсерин содержится только в ее внутреннем (возвращенном к цитозоля) слое, однако во время апоптоза он "перескакивает" в наружный листок. Эта молекула служит сигналом "съешь меня" для ближних фагоцитов . Фосфатидилсерин-индуцированное поглощение апоптических клеток, в отличие от других типов фагоцитоза, не приводит к выделению медиаторов воспаление . Описанная изменение плазмалемме лежит в основе еще ​​одного метода выявления клеток, погибающих путем апоптоза - окрашивание анексином V, специфически связывается с фосфатидилсерина .


3. Каспаз - медиаторы апоптоза

Клеточные системы, которые обеспечивают прохождение апоптоза, аналогичные у всех животных, центральное место в них занимает семья белков каспаз. Каспаз - это протеазы , имеющие в активном центре остаток цистеина , и разрезают свои субстраты по специфическому остатка аспарагиновой кислоты (отсюда название: c от cysteine и asp от aspartic acid ). Каспазы синтезируются в клетке в виде неактивных прокаспаз, которые могут становиться субстратами для других, уже активированных каспаз, что режут их в одном или двух местах по остатку аспартата. Два образованы фрагменты - больший и меньший - соединяются между собой, формируя димер, что ассоциирует с таким же диммером. Сформированный таким образом тетрамер и является активной протеазой, что может разрезать белки-субстраты. Кроме участков, соответствующих большей и меньшей субъединиц, прокаспазы иногда также содержат ингибиторные продомены, которые деградируют после отщепления.

В результате расщепления и активации одних каспаз другими формируется протеалитичний каскад, который существенно усиливает сигнал и делает апоптоз с определенного момента необратимым процессом. Те прокаспазы, которые начинают этот каскад называются инициаторным, а их сусбтраты - эффекторными. После аткивации эффекторные каспазы могут расщеплять другие эффекторные прокаспазы или белки-мишени. До мишеней эффекторных каспаз, которые разрушаются во время апоптоза относятся в частности белки ядерной ламины, розщелення которых приводит к распаду этой структуры. Также деградирует белок, при нормальных условиях подавляет эндонуклеазы CAD, вследствие этого начинается фрагментация ДНК. Расщепляются каспаз и белки цитоскелета и межклеточной адгезии , вследствие чего апоптические клетки округляются и отсоединяются от соседних клеток, и таким образом становятся легче мишенью для фагоцитов .

Набор каспаз, необходимый для прохождения апоптоза зависит от типа ткани и пути, по которому активируется клеточная смерть. Например у мышей при "выключении" гена, кодирующие эффекторные каспазы-3, апоптоз не происходит в мозге, однако нормально протекающей в других тканях .

Гены прокаспаз активны в здоровых клетках, а следовательно белки необходимы для протекания апоптоза постоянно присутствующие, нужна лишь их активация для запуска клеточного суицида. В состав инициаторных прокаспаз входит длинный продомен, содержащий CARD ( caspase recruitment domain , Домен привлечения каспаз). CARD позволяет инициаторным прокаспазы присоединяться к адаптерных белков образуя активационные комплексы, когда клетка получает сигнал, что стимулирует апоптоз. В активационных комплексах несколько молекул прокаспаз оказываются непосредственно вблизи друг друга, чего достаточно для их перехода в активное состояние, после чего они разрезают друг друга .

Два лучше изучены сигнальные пути активации каскада каспаз в клетках млекопитающих называются внешний и внутренний (митохондриальный), каждый из них использует собственные инициаторным прокаспазы .


4. Пути активации апоптоза

4.1. Внешний путь

Клетка может получать сигнал, индуцирующего апоптоз, извне, например, от цитотоксических лимфоцитов. В таком случае активируется так называемый внешний путь ( extrinsic pathway ), Начинающийся с рецепторов смерти. Рецепторы смерти - это трансмембранные белки , принадлежащие к семейству рецепторов фактора некроза опухолей (ФНО), например сам рецептор ФНО и рецептор смерти Fas. Они формируют гомотримеры, в которых каждый мономер имеет внеклеточный лиганд-Связной домен, трансмембранный домен и цитоплазматический домен смерти, через адаптерные белки привлекает и активирует прокаспазы .

Лиганды рецепторов смерти также гомотримерамы. Они родственны между собой и принадлежат к семейству сигнальных молекул фактора некроза опухолей. Например, цитотоксические лимфоциты несут на своей поверхности лиганды Fas, которые могут присоединяться к рецепторам смерти Fas на плазмалемме клеток-мишеней. В таком случае внутриклеточные домены этих рецепторов соединяются с адаптерного белка ( FADD, Fas-associated death domain ), А те в свою очередь привлекают инициаторным прокаспазы 8 и / или 10. Вследствие этой серии событий формируется сигнальный комплекс, индуцирующего смерть, - DISC ( death inducing signaling complex ). После активации в этом комплексе инициаторным каспазы разрезают эффекторные прокаспазы и запускают апоптичнои каскад .

Многие клетки синтезируют молекулы, в определенной степени защищают их от активации внешнего пути апоптоза. Примером такой защиты может быть экспрессия так называемых рецепторов-приманок ( decoy receptors ), Имеющих внеклеточные домены связывания лигандов, однако не цитоплазматических доменов сметри, а следовательно не могут запускать апоптоза и конкурируют с обычными рецепторами смерти за лиганды. Клетки также могут продуцировать белки, блокирующие внешний путь апоптоза, например FLIP, похожий по структуре прокаспаз 8 и 10, однако не протеалитичнои активности. Он подавляет связывание инициаторных прокаспаз с комплексом DISC .


4.2. Внутренний путь

Апоптосома

Апоптоз также может запускаться изнутри клетки, например в случае ее травмирования, повреждения ДНК, недостатка кислорода , питательных веществ или внеклеточных сигналов выживания. У позвоночных этот сигнальный путь называется внутренним ( intrinsic pathway ) Или митохондриальной, ключевым событием в нем является высвобождение определенных молекул с межмембранном пространстве митохондрий. До таких молекул зокрема належить цитхром c, що за звичайних умов входить до електрон-транспортного ланцюга мітохондрій, проте у цитоплазмі виконує іншу функцію - приєднується до адаптерного білка Apaf ( apoptotic protease actiuating factor-l ), Вызывая его олигомеризации в колесоподибну семичленну структуру, которая называется апоптосома. Апоптосома привлекает и активирует инициаторным прокаспазу-9, которая затем может активировать инициаторным прокаспазы .

В некоторых клетках внешний путь апоптоза должен активировать внутренний для того чтобы эффективно уничтожить клетку. Внутренний путь строго регулируется белками семьи Bcl-2 .


4.2.1. Регуляция внутреннего пути белками семьи Bcl-2

К семейству Bcl-2 относятся эволюционно консервативны белки, главной функцией которых является регуляция высвобождения цитохрома c и других молекул с мижмебранного пространства митохондрий. Среди них есть про-апоптические и анти-апоптические молекулы, которые могут взаимодействовать между собой в различных комбинациях, подавляя друг друга, баланс между их активностью и определять судьбу клетки .

Сейчас известно около 20 белков из этой семьи, все они содержат хотя бы один из четырех альфа-спиральных доменов гомологии Bcl2, называемых BH1-4 ( bcl2 homology ). Антиапоптични белки семьи Bcl2 содержат все четыре домены, к ним относятся сам Bcl-2, а также Bcl-X L, Bcl-w, Mcl-1 и A1. Проапоптични белки делятся на две группы, члены первой из которых содержат три BH-домены (BH1-3), это в частности Bak, Bax и Bok (последний экспрессируется только в тканях репродуктивных органов). Наиболее многочисленной среди семьи Bcl-2 является вторая группа проапоптичних белков, которые содержат только домен BH3 (BH3-only), к ней относятся Bim, Bid, Bad, Bik / Nbk, Bmf, Nix/BNIP3, Hrk, Noxa, Puma .

При нормальных условиях (т.е. когда клетка не проходит апоптоза) антиапоптични белки, такие как Bcl-2 и Bcl-X L, связываются с проапоптичнимы белками BH123 (Bax и Bak) и не позволяют им полимеризоваться во внешней мембране митохондрий образуя поры. В результате действия определенного апоптичнои стимула в клетке активируются или начинают синтезироваться проапоптични белки, содержащие только домен BH3. Они в свою очередь ингибируют антиапоптични белки, снимая угнетающее действие на Bak и Bax, либо напрямую взаимодействуют с последними и способствуют их олигомеризации и образованию пор. Вследствие пермеабилизации наружной мембраны в цитозоль попадает цитохром c , а также другие медиаторы апоптоза, такие как AIF (англ. apoptosis inducing factor ).

Например, при недостатке сигналов выживания в клетке при посредничестве MAP-киназы JNK активируется экспрессия BH3 белка Bim, запускающий внутренний путь апоптоза. В случае повреждения ДНК происходит накопление супрессора опухолей p53 , который стимулирует транскрипцию генов, кодирующих BH3 белки Puma и Noxa, которые также обеспечивают прохождение апоптоза. Еще один BH3 белок - Bid обеспечивает связь между внешним и внутренним путями апоптоза. После активации рецепторов смерти и, как следствие, каспазы-8, последняя разрезает Bid с образованием усеченной формы tBid (truncated Bid), которая перемещается в митохонрий, где подавляет Bcl-2 .


Апоптоз - запрограммированная гибель клетки в ответ на внешние или внутренние сигналы. Апоптоз происходит во время нормального развития, но может быть результатом рака, ВИЧ, болезни Альцгеймера.

Распространенность в природе

Во время нормального развития организма апоптоз возникает в клетках при формировании формы или структуры органа. Например при образовании конечности мыши некоторые клетки подвергаются апоптозу и образуются пальцы.

Апоптоз во время нормального развития конечности мыши. Клетки подвергшиеся апоптозу (слева) мечены желтым. Та же конечность (справа) через один день.

Интересно, что некоторые птицы, такие как утка, имеют перепонки между пальцами, тогда как у других птиц, таких как курица, перепонок нет. В раннем эмбриогенезе и курицы и утки имеют перепонки между пальцами. Специфический белок BMP4 образуется в клетках между пальцами, запуская клеточную смерть этих клеток. Другой белок BMP (gremlin) образуется вокруг пальцев у обоих птиц и только у уток образуется также и в клетках перепонок, предотвращая запуск апоптоза в них.

Если добавлять белок gremlin в перепонку эмбрионов курицы, то она не подвергается апоптозу и сохраняется.

Слева лапка курицы после добавления в перепонку белка Gremlin (перепонка сохранилась), справа контрольный эксперимент без добавления белка (перепонка подверглась апоптозу).

Другим примером апоптоза в нормальном развитии является метаморфоз головастика лягушки. Под воздействием тиреоидного гормона при метаморфозе головастика лягушки, запускается апоптоз и хвост головастика исчезает.

Пути апоптоза в клетке


Существуют два основных пути апоптоза в клетке:митохондриальный путь и путь через рецепторы апоптоза (смерти).
1. Рецепторы апоптоза - семейства белков CD95 (Apo-1 или Fas) и TNF-R (фактор опухолевого некроза). TNF-альфа высоко цитотоксичная молекула, использовалась как лекарство против рака. TNF-R1 рецептор широко распространен и поэтому не может быть избирательным. Другие представители этого семейства (не все) имеют домен клеточной смерти (DD) - домен белок-белкового взаимодействия связывающийся с белком адаптором, таким как FADD. Активация рецепторов апоптоза лигандами (например, CD-95L и TNF-альфа приводит к активации каспазы-8, запуская каскад реакций ведущих к апоптозу.
2. Митохондриальный путь . Митохондрии выполняют центральную роль в апоптозе, при этом наблюдается увеличение проницаемости митохондриальной мембраны. Баланс между про- и анти-апоптозных членов семейства Bcl-2 регулирует выход про-апоптозных веществ из митохондрий, ведущих к запуску апоптоза, таких как AIF, эндонуклеаза G, Smac/DIABLO и цитохром C. Утечка цитохрома-С из митохондрии приводит к образованию апоптосомы в цитоплазме, которая активирует каспазу-9 и запускает клеточную смерть.
Оба пути приводят к активации каспаз и запуску каскада реакций приводящих к гибели клетки.

Каспазы

Каспазы (caspase) - ферменты расщепляющие белки по остаткам аспартата. Они содержат цистеиновые остатки на своих активных центрах. Многие изоформы каспаз ведут к апоптозу. Они могут быть активированы двумя путями: через рецепторы апоптоза и митохондрии.
Первая открытая каспаза - Ced-3 (Cell Death-3), обнаруженная у нематоды C. elegans. Мутация Ced-3 предотвращала гибель 131 клетки в процессе нормального развития нематоды. Гомолог Ced-3 у млекопитающих - интерлейкин-1альфа-преобразующий фермент (ICE) и был позже назван ингибитор каспазы-1.

Каскад активации каспаз

Известно 14 каспаз, которые подразделяются на инициаторы, эффекторы и стимуляторы. Инициаторы (каспаза-8 и -9) расщепляют и активируют каспазы эффекторы (каспаза-3). Эффекторы расщепляют различные белки, что ведет к гибели клетки. Активация каспаз ведет к запуску протеолитического каскада реакций ведущих к гибели клетки. При этом одни каспазы активируют другие - амплификация сигнала.

Каспаза представляет собой тетрамер, состоящий из двух больших (~20kDa) и двух малых субъединиц (~10kDa). Большая и малая субъединицы образуется в результате расщепления прокаспазы. Каспаза содержат два активных центра QACXG. Ингибирующий домен (DED или CARD) может быть вырезан из каспазы.
Эффекторные каспазы активируются другими каспазами (трансактивация). Инициаторные каспазы активируются автоактивацией, которая происходит при взаимодействии нескольких прокаспаз (например, прокаспаза-8 и DISC). Рецептор апоптоза сам по себе не обладает протеазной активностью.
Активация каспаз ведет к различным последствиям:
каспаза-9 разрушает ядерные поры, что ведет к проникновению в ядро каспаз-3 и -7. Каспаза-3 расщепляет ингибирующую субъединицу ICAD в двух местах. Выпуск CAD приводит к расщеплению ДНК между нуклеосомами.
Каспазы ведут к реорганизации цитоскелета и распаду клетки на апаптозные тельца.

Каспазы - семейство цистеиновых протеиназ, главные эффекторы апоптоза, существуют в клетке как неактивные проформы и зимогены, которые расщепляются на активные формы ферментов, активируя апоптоз.
Лиганд-->рецептор смерти-->активация инициаторов каспаз (каспаза-8, -10)-->каскад активации других каспаз>активация каспаз-3, -6-->инактивация клеточных структур.
Разрушение клеточных структур при апоптозе
Фрагментация хромосомной ДНК неактивный фермент CAD в комплексе с ICAD (ингибитор CAD-фактор фрагментации ДНК) расщепляется каспазой-3 высвобождая CAD, кот разрезает ДНК м-у нуклеосомами
Инактивация ферментов вовлеченных в репарацию ДНК - фермент поли (ADF-ribose) полимераза, или PARP- первый белок обнаруженный как субстрат для каспаз. PARP вовлекается в репарацию ДНК и катализирует синтез (ADF-ribose) и закрепляет на цепи ДНК ломая и изменяя ядерные белки. Способность PARP репарировать разрушения ДНК предотвращается последующим расщеплением PARP каспазой-3
Инактивация белков вовлеченных в репликацию. Каспазы могут инактивировать ДНК топоизомеразу II, способствуя разрушению ДНК.
Разрушение структурных ядерных белков. Каспаза-6 разрушает ламины разрушая ядро, что приводит к конденсации хромосом.
Чувствительность клеток к стимулам изменяется в зависимости от экспрессии про- и анти-апоптозных белков (Bcl-2 белок ингибитора), серьезности стумулов и стадии клеточного цикла
Распад клетки на везикулы, переход фосфатидилсерина из внутреннего монослоя цитоплазматической мембраны в наружный монослой, уменьшение объема клетки, сморщивание цитоплазматической мембраны, конденсация ядра (апоптозные тельца), фагоцитирующиеся макрофагами и клетками-соседями.
Инициаторы апоптоза
внешние сигналы (связывание лиганда индуцирующего смерть рецептором на клеточной пов-ти), быстрый вариант а
гранзим B может доставляться в клетки цитотоксичными T лимфоцитами, когда они узнают инфицированную клетку, активирует каспазы-3, 7, 8 и 10.

клеточный стресс – радиация, химикалии, вирусная инфекции, недостаток фактора роста, ox стресс | кол-во bcl-2 белков определяет кол-во стресса необходимого для запуска а. Если митохондрии не справляются с удалением активных форм O2, последнии инициируют открытие пор во внеш. м-не и выход в цитозоль белка, ответственного за каскад реакций, ведущих к синтезу протеаз, нуклеаз
Митохондрия может быть ключевым регулятором каспазного каскада и апоптоза - избавление от цитохрома С в митохондрии может вести к активации каспазы 9 и затем каспазы 3. Этот эффект достигается через образование апоптосомы – мультипротеинового комплекса включающего цитохром C, Apaf-1, прокаспазу 9 и АТФ

Апоптосома

Цитохром C освобождается из митохондрий, связываясь с цитозольным белком Apaf-1. Это взаимодействие изменяет конформацию Apaf-1 которая стабилизируется связыванием ATP позволяя молекулам Apaf-1 ассоциировать друг с другом в колесоподобный комплекс состоящий из 7 молекул. Apaf-1, цитохром C и ATP - апоптосома, присоединяющая 7 молекул прокаспаз-9. Возможные механизмы:
1. Apaf-1, цитохром C и прокаспаза-9 – комплекс может активировать цитозольную прокаспазу-9 входящую в апоптосому.
2. Две апоптосомы взаимодействуют друг с другом активируя прокаспазу-9.

Оксид азота NO ингибирует апоптоз в лейкоцитах, гепатоцитах, трофобластах и эндотелиальных клетках. Эффект может быть вызван через нитрозилирование и инактивацию каспаз-3, -1, -8. NO взаимодействует с гемом гуанилат циклазы-->синтез сGMP-->активация cGMP-зависимой протеинкиназы-->экспрессия противоапоптозных белков.
bcl-2 - семейство белков

bcl-2 - семейство белков регуляторы апоптоза (bc-2, bcl-XL – противоапоптозные), (Bad, Bax – проапоптозные) | чувствительность клеток к апоптозным стимулам может зависеть от баланса противо- и проапоптозных bc-2 белков | стресс?проапоптозные bc-2 белки перемещаются на пов-ть митох, инактивируя антиапоптозные белки, что приводит к образ пор в митох и выпуск цитохрома с и др про-апоптозных молекул из межм-ного пр-ва-->формируется апоптосома-->активация каспазового каскада.
Проапоптозные члены Bcl-2 увеличивают проницаемость митохондриальной мембраны, что ведет к попаданию проапоптозных белков в цитоплазму. Противоапоптозные представители семейства - уменьшают проницаемость.
Bcl-2 разделяется на три субсемейства.
Bcl-2 субсемейство включает Bcl-2, Bcl-xL и Bcl-w, являющиеся противоапоптозными.
Bax субсемейство включает Bax, Bak и BAD, являющиеся проапоптозными белками. Их последовательности гомологичны регионам Bcl-2 субсемейства - BH1, BH2 и BH3, но не региону BH4.
BH3 субсемейство с единственным представителем - Bid, у которого гомологичен только BH3 регион.У Bid так же отсутствует трансмембранный домен.
Имеется несколько моделей, как Bcl-2 могут регулировать проницаемость митохондриальной мембраны.
Члены Bcl-2 семейства способны формировать гомо- и гетеродимеры. Гетеродимеризация между про- и противо-апоптозными представителями Bcl-2 ингибирует про-апоптозный белок.
Bcl-2 белки так же способны образовывать ионные каналы (Bcl-xL, Bcl-2 и Bax).
По другому механизму Bcl-2 образуют поры в митохондриальной мембране, осуществляющие неспецифический транспорт небольших молекул меньше 1.5kDa, что нарушает синтез ATP и ведеит к клеточной смерти. Так же цитохром-С и AIF могут выходить в цитоплазму и образовывать апоптосомуt. Bax и Bak - индуцируют выход цитохрома-С и AIF из митохондрий.

Сокращения.

DD - death domain
Caspases - (cysteinyl aspartate-specific proteases)
ICE - interleicin converting enzime

1007 0

Основная задача системы, регулирующей апоптоз, - держать эффекторные каспазы, демонтирующие клетки, в неактивном состоянии, но быстро переводить их в активную форму в ответ на минимальное действие соответствующих индукторов.

Функцию активации эффекторных каспаз берут на себя каспазы-индукторы, основными представителями которых являются каспаза 8 и каспаза 9.

Эти каспазы при обычном состоянии клетки неактивны, существуют в форме прокаспаз. Отсюда действие разнообразных проапоптотических сигналов направлено на активацию каспазы 8 и каспазы 9.

В соответствии с этим выделяют 2 типа ведущих сигнальных путей:

1) Повреждение ДНК, радиация, действие токсических агентов, действие глюкокортикоидов, прекращение цитокиновой регуляции, укорочение до критического уровня теломеров - активация каспазы 9;
2) Проапоптотические сигналы, возникающие при активации рецепторов «региона клеточной смерти» (например, Fas-R, TNF-R) - активация каспазы 8.

Рассмотрим последовательно каждый из этих путей, схематично представленных на рис. 1.4.

Сигнальные пути активации каспазы 9

Сенсором повреждения ДНК и нарушений в клеточном цикле является ген Р53.

Р53-ген

Ген Р53, располагающийся на коротком плече хромосомы 17, кодирует образование ядерного белка, состоящего из 393 аминокислот, с молекулярной массой 53 Kd. Тетрамер Р53 функционирует как транскрипционный фактор, связываясь своим карбоксильным окончанием со специфическими регионами генов-мишеней. Белок Р53 находится в цитоплазме в латентном состоянии.

В последние годы показано, что активация его происходит не только в ответ на поражение ДНК, но также может явиться и следствием многих других процессов, происходящих в клетке, в том числе активации онкогенов, гипоксии, дефиците питания, старении и других. Недаром этот ген получил у одних авторов название «Господин ночной сторож», а у других - «Хранитель генома».

При активации Р53 белок способен инициировать независимо друг от друга 2 программы:

  • Временную остановку клеточного цикла в G1/S фазе с помощью белка p21 WAF1 , ингибирующего циклинзависимые киназы
  • Стимуляцию апоптоза путем активации гена Вах - проапоптотического гена семьи Всl-2 и/или активации образования свободных форм кислорода, способствующих выходу цитохрома-С из митохондрий.
Появившиеся в последние годы экспериментальные данные с выключение генов позволяют предположить, что приоритетной для большинства клеток является программа временной остановки митотического цикла. Есть сведения и об участии Р53 в процессах репарации ДНК путем активации вновь открытого гена P53R2, кодирующего рибонуклеотид редуктазу. Программа апоптоза включается при невозможности клеткой репарировать ДНК во время «ареста» при прохождении митотического цикла и/или дефиците белка p21 WAF1 . В некоторых клетках генетически обусловлен приоритет программы апоптоза при активации Р53 гена.

Роль Р53 - тканезависимая. У мышей в эксперименте с выключением этого гена радиация не вызывала апоптоза в лимфоцитах, но в легочной ткани признаки апоптоза были ярко выражены.

Рисунок 1.4. Основные пути апоптоза. Вах, Bid - проапоптотические гены семьи Всl-2 . dATP - аденозинтрифосфорная кислота. APAF-1 - апоптотический протеазактивирующий фактор

На рисунке представлены основные пути апоптоза, реализующие проапоптотические сигналы двух основных типов: повреждение ДНК радиацией или цитотоксическими агентами) и активация рецепторов «региона клеточной смерти».

Повреждение ДНК вызывает активацию гена Р53. Дальнейшее прохождение апототического сигнала этого типа происходит через активацию проапоптотических генов семьи Всl-2 (Вах и Bid). Белки этих генов вызывают пермеабилизацию мембраны митохондрий и выход в цитозоль Цитохрома С, аденозинтрифосфорной кислоты (dATP) , апоптоз индуцирующего фактора (Aif) и ДНКазы. Цитохром С вместе с dATP активирует находящийся в цитозоле белок APAF-1, образуя апоптосому, в которой происходит активация каспазы-9. Последняя активирует каспазу-3 - основной «экзекьютор» каспазного каскада.

Вслед за этим активируются другие каспазы, протеазы и ДНКазы, происходит апоптоз. Высвобожденные из митохондрий Aif и ДНКаза выполняют дополнительный внекаспазный путь апоптоза, реализуют свою активность непосредственно в ядре.

Связывание рецепторов «региона клеточной смерти» с соответствующими лигандами приводит к активации каспазы 8, способной к независимой активации каспазы 3. На этом пути может происходить и дополнительное вовлечение семьи Всl-2 генов путем активации каспазой 8 белков гена Bid.

И все-таки основной функцией гена Р53 следует считать включение программы апоптоза при повреждении клеточного генома, что можно рассматривать как защитную реакцию организма от накопления генетически дефектных клеток. Снижение активности гена Р53 или мутация в нем, приводящая к потере способности к включению апоптоза, является серьезным фактором, предрасполагающим к возникновению опухолей и развитию резистентности к химиотерапии.

Мутация гена Р53 обнаруживается более чем в половине раковых опухолей, частота ее повышается при длительной химиотерапии. У детей мутация в гене Р53 чаще наблюдается при Т-ОЛЛ, составляя около 12% и всегда является прогностически неблагоприятным фактором.

Итак, ген Р53 необходим для реализации программы апоптоза при повреждении ДНК и токсических воздействиях на клетку. Как это видно на схеме (рис.4), следующим шагом в проведении проапоптотического сигнала по этому пути является включение семьи Всl-2 - генов.

Семья Bcl-2-генов

Интерес к апоптозу резко возрос в середине 80-х годов, когда было выявлено, что усиление активности онкогена Всl-2, являющееся следствием обычной для В-клеточной фоликулярной лимфомы человека транслокации t (14;18), приводит к образованию опухолевого клона не за счет усиления пролиферации, а вследствие повышения выживаемости опухолевых клеток.

Позднее было показано, что при этой транслокации онкоген Всl-2, изначально располагавшийся на хромосомном сегменте 18q21, сливается с локусом, кодирующим тяжелую цепь Ig на хромосоме 14q32, что приводит к его повышенной экспрессии. Молекулярно-генетические исследования последующего десятилетия показали, что в, так называемую, семью Всl-2 генов, картированных у человека на 18 хромосоме, входят и другие гены, экспрессирующие белки с противоположной функцией (см.табл.1.1).

Таблица 1.1. Состав семьи Всl-2 генов

* обозначает число консервативных последовательностей, известных как регионы, гомологичные Всl-2. **** - 4 региона (ВН1-ВН4); *** - 3 региона (ВН1-ВНЗ); ** - 2 региона (ВНЗ, ВН4); * - 1 регион (ВНЗ); СООН-концевой гидрофобный домен, ответственный за прикрепление белков к наружной пластинке митохондриальной мембраны.

В настоящее время клонировано 16 генов, составляющих эту семью. Белки, производные этих генов, объединяет схожий морфологический состав - каждый из них имеет хотя бы одну из 4-х консервативных аминокислотных последовательностей, характерных для Всl-2-гена. Эти последовательности известны как регионы, гомологичные Всl-2 (ВН1-ВН4). Функциональное значение этих регионов до конца неясно, но по мнению некоторых исследователей, именно они обеспечивают реактивные способности белкам этой семьи.

Как следует из представленных в табл.1.1. данных, только 6 из них оказывают, подобно основателю этой семьи - Всl-2 гену, антиапоптотическое действие: защищают клетки от широкого спектра физиологических и экспериментальных воздействий, направленных на индукцию апоптоза. К таким стимулам относятся повреждение ДНК, действие глюкокортикоидов, прекращение цитокиновой регуляции и др. Некоторые из белков этой группы имеют СООН-концевой гидрофобный регион, ответственный за прикрепление белков к наружной поверхности митохондриальной мембраны.

Остальные 10 членов семьи - Всl-2 вызывают апоптоз. Эти проапоптотические белки могут быть подразделены на 2 подгруппы в зависимости от числа ВН регионов, которыми они располагают. Первые 4 (см.табл.1.1.) имеют по 2-3 ВН-региона, в то время как у 6 остальных обнаруживается только один ВНЗ-регион. Именно с этим регионом связывают проапоптотическую функцию белков. Многие из проапоптотических белков также, как антиапоптотические белки этой семьи, имеют концевой гидрофобный домен, но в отличии от последних, не прикрепляются к митохондрии до получения проапоптотического сигнала.

Восприятие анти- или проапоптотических сигналов членами семьи Всl-2 происходит как на уровне генов (так, белок Р53 повышает экспрессию гена Вах) так и на уровне постранскрипционных белков (действие цитокинов). При этом между самими белками наблюдаются сложные взаимодействия иногда в антагонистической манере. В процессе этих взаимодействий про- и антиапоптотические протеины могут образовывать гомо- и гетеродимеры как внутри своей группы, так и с протеинами противоположной направленности действия (см.рис. 1.5). Некоторые связи между промоторами и супрессорами клеточной смерти высоко специфичны (например, Воk и Мс1-1), другие скорее случайны.

Рисунок 1.5. Способы взаимодействий между белками семьи Всl-2

Значение этих взаимодействий пока прояснено только в отношении проапоптотических белков, имеющих один ВНЗ домен. Эти белки способны реализовать свою проапоптотическую активность только в антагонистической манере, образуя гетеродимеры с антиапоптотическими белками семьи Всl-2. Это правило не распространяется на всех членов семьи; Bcl-xL например, для выражения своей антиапоптотической активности не требует связи с промотором клеточной смерти.

Рисунок 1.6. Предрасположенность к апоптозу. Отношение числа гомодимеров к гетеродимерам определяет предрасположенность к апоптозу

В результате многочисленных экспериментов к настоящему времени сложилось впечатление, что решение жить или умереть клетке принимается на уровне семьи Всl-2 на основании относительного преобладания активных супрессоровили промоторов апоптоза. Это положение схематично проиллюстрировано на рис. 1.6.

Как же происходит реализация этого решения, что необходимо для дальнейшего продвижения по сигнальному пути, конечным пунктом которого должна стать активация индукторной каспазы 9?

Про- и антиапоптотическое действие активированных белков семьи Всl-2 реализуется главным образом через модуляцию активности митохондрий.

Роль митохондрий в процессах апоптотической смерти клеток

Митохондрия - матрикс, образованный клеточными органеллами и окруженный двухслойной мембраной. Митохондрия содержит геном, способный кодировать ограниченное число РНК и белков, необходимых для ее функции, однако, большинство же компонентов митохондрии кодируются в ядре, а затем импортируются в нее. Роль митохондрий в поддержании жизни велика - они являются основным источником клеточной энергии, образуя АТФ из АДФ с помощью окислительного фосфорилирования. В то же время многие исследователи считают митохондрии ключевой фигурой апоптоза.

Это связано с тем, что митохондрии являются источником цитохрома С, АТФ, Са++, Аиф (апоптоз индуцирующий фактор) - компонентов, необходимых для дальнейшего продвижения апоптотического сигнала. Выход этих факторов из митохондрии осуществляется только при взаимодействии ее мембраны с активированными белками семьи Всl-2. Многое в этом процессе требует уточнения, однако, схематически его можно представить следующим образом. Активированные белки семьи Всl-2 своими СООН - гидрофобными основаниями, как якорями прикрепляются к наружной мембране митохондрий.

Происходит это в местах сближения наружной и внутренней мембран, где, по-видимому, физиологически существуют пермеабилизационные поры, называемые мегаканалами, с диаметром, не превышающим 2nm. Эти поры функционируют как сенсоры многих физиологических параметров и таким образом передают информацию об основных метаболических процессах, происходящих в клетке. Они являются каналами для Са2+, вольтажа, РН, активных форм О2, но не пропускают некоторые анионы и непроходимы для более крупных молекул Цитохрома С, АТФ и Аиф, необходимых для апоптоза.

Было показано, что проапоптотические белки семьи Всl-2 (Вах, Bad, Bak и др.), укоренившись в наружной мембране, вступают в соединение с ANT (adenin-nucleotid-translocator), встроенным во внутреннюю мембрану в этих локусах, образуя временно более крупные мегаканалы (диаметр 2,4-3 nm). По эти каналам в цитозоль клетки поступают Цитохром С, АТФ и апоптоз индуцирующий фактор. Антиапоптотические белки семьи Всl-2 не способны пермеабилизировать мембрану митохондрий, а по некоторым данным, напротив, закрывают уже существующие каналы, прерывая таким образом продвижение проапоптотического сигнала и защищая клетку от апоптоза. Каково назначение проапоптотических митохондриальных сигнальных молекул?

Цитохром-С - белок с молекулярной массой 15 kDa, кодируется ядерным геномом, синтезируется как апоцитохром С, импортируется в митохондрию, где прикрепляется к внутренней поверхности мембраны и выходит в цитозоль через мегаканалы, открытые для него проапоптотическими белками семьи Всl-2 (Вах, Bad, Bak и др.). Цитохром-С необходим для образования апоптосомы, где и происходит активация каспазы 9, которая затем, в свою очередь, активирует основную «киллерную» каспазу 3 (см.рис. 1.4). Так завершается сигнальный путь апоптоза, вызванный повреждением ДНК.

Апоптосома представляет собою комплекс APAF-1 (apoptotic protease activating factor), Цитохрома-С, каспазы-9 и АТФ. До соединения с Цитохромом С APAF-1 существует в цитозоле в неактвном состоянии. При отсутствии достаточного количества АТФ образование апоптосомы не происходит и гибель клетки идет по некротическому пути.

Вместе с Цитохромом-С и АТФ из митохондрий в цитозоль клетки выходит также АИФ (апоптоз индуцирующий фактор). Синтез этого фактора также кодируется ядерным геномом, преврашение в зрелую форму (белок с молекулярной массой 75 kDa) происходит в митохондрии. Выйдя из митохондрии, АИФ направляется в ядро клетки, где вызывает фрагментацию ДНК, напоминающую апоптоз. Оверэкспрессия Всl-2 препятствует выходу апоптоз индуцирующий фактор из митохондрий, но не его активности при введении АИФ в клетку в эксперименте. АИФ не требует цитозолевой активации, выделяется из митохондрии до Цитохрома-С и, возможно, способствует его выходу. Таким образом, апоптоз индуцирующий фактор является самостоятельным "киллерным" фактором, дублирует действие Цитохрома-С и каспаз при их блокировании.

Интересно, что в процессе апоптоза митохондрия не теряет своей целостности и не подвергается разрушению.

Перечисленные здесь события легли в основу гипотезы, по которой митохондрия представляется ключевой фигурой апоптоза. Однако существует и альтернативная гипотеза, считающая основным мотором апоптоза каскадную активацию каспаз, при этом высвобожденный из митохондрий Цитохром С является не инициатором, а лишь усилителем апоптотического каскада. Последние представления поддерживаются данными о том, что активность семьи Всl-2 может поддеживаться и без участия митохондрий. Показано, что антиапоптотические белки этой семьи могут образовывать в цитозоле комплекс с APAF-1, блокирующий его активность. Ингибиция этой связи проапоптотическими членами семьи Всl-2 высвобождает APAF-1 и разрешает ему активировать каспазу 9.

Сигнальный путь активации каспазы 8

Передача проапоптотического сигнала при связи лиганда с рецепторами региона клеточной смерти происходит поседством адапторных белков FADD/MORT1, чей N-терминальный регион (DED) в свою очередь связывается с аналогичным регионом прокаспазы-8, вызывая ее аутокаталитическую активацию (см.рис. 1.4 и рис. 1.7). При активации некоторых членов семьи TNF-рецепторов (в том числе, TNF-R1) используется дополнительный адапторный белок TRADD.

Рисунок 1.7. Апоптоз, индуцированный сигналом «региона клеточной смерти». FADD-fas-associated death domain (связанный с FAS регион клеточной смерти); TRADD-TNF- associated death domain (связанный cTNF-R регион клеточной смерти); DD - death domain (регион смерти); DED - death effector domain (регион исполнителя смерти); NF-kB, АР-1 - транскрипционные факторы, активирующие провоспалительные и иммуномодуляторные гены

Рецепторный путь клеточной смерти представляется более коротким, чем апоптотический каскад, инициированный повреждением ДНК и рассмотренный выше: посредством адаптерных молекул происходит активация каспазы 8, которая в свою очередь способна напрямую активировать каспазы-палачи. Но это только основная схема, в действительности этот сигнальный путь значительно более сложный и переплетается с другими механизмами апоптоза. Так, известно, что каспаза 8 способна активировать белок Bid, что приводит, как подробно описано выше, к выбросу Цитохрома С из митохондрий. И хотя ясно, что этот путь не требует активации митохондрий, вовлечение их в процесс усиливает рецептор-индуцированный апоптоз (см.рис. 1.4).

Этот же сигнальный путь с привлечением других адаптерных белков используется и для реализации других клеточных программ. Так, сигнал, прошедший через TNF-R1, может активировать также и транскрипторные факторы NF-kB и АР-1. Эти сигнальные молекулы вызывают активацию генов, обеспечивающих продукцию факторов воспаления. Таким образом при активации TNF-R клетка должна принять решение - совершить ли самоубийство или выжить для продукции провоспалительных цитокинов.

Последнее решение принимается лимфоцитами чаще, возможно, потому что транскрипционный фактор NF-kB тормозит апоптотические пути. На выбор клетки влияет, по-видимому, и клеточное сообщество. Этот пример подтверждает то, что одни и те же сигнальные пути используются для реализации различных клеточных программ, механизмы выбора и принятия решения остаются во многом неясными. Так, рецепторный путь клеточной смерти у лимфоцитов независим от семьи Всl-2-генов и не может быть подавлен их антиапоптотической активностью.

Активация же Р53 может приводить в некоторых клеточных системах к трансактивации генов, кодирующих рецепторы региона «клеточной смерти».

Таким образом, существуют различные, часто перекрещивающиеся пути и механизмы реализации апоптотической программы, зависящие от клеточного типа и специфики проапоптотического сигнала. Разнообразие и многовариантность сигнальных путей апоптоза обеспечивают клетке запасные возможности для осуществления столь важной для клетки программы и в то же время делают эту программу очень зависимой от множества внешних и внутренних воздействий.

Е.Б. Владимирская