Оцк у взрослых. Что такое оцк

Оцк у взрослых. Что такое оцк
Оцк у взрослых. Что такое оцк

Объем циркулирующей крови (ОЦК) составляет 2,4 л на 1 м 2 поверхности тела у женщины и 2,8 л на 1 м 2 поверхности тела у мужчин, что соответствует 6,5 % массы тела женщин и 7,5 % массы тела мужчин [Шустер X. П. и др., 1981].

Величину ОЦК можно рассчитывать в миллилитрах на килограмм массы тела. У здоровых мужчин ОЦК составляет в среднем 70 мл/кг, у здоровых женщин — 65 мл/кг. Г. А. Рябов (1982) рекомендует для определения должной величины ОЦК использовать рассчетную таблицу, составленную Moore.

Для практической работы, особенно в экстренных случаях, при лечении острой кровопотери более удобен расчет величины кровопотери по отношению к ОЦК. Так, средний ОЦК взрослого человека с массой тела 70 кг составляет 5 л, из которых 2 л приходится на клеточные элементы — эритроциты, лейкоциты, тромбоциты (глобулярный объем) и 3 л — на плазму (плазматический объем) . Таким образом, в среднем ОЦК составляет 5—6 л, или 7 % массы тела Климанский В. А., Рудаев Я. А., 1984].

Объем циркулирующей крови у здоровых людей (в миллилитрах)

Масса
тела, кг
Мужчины Женщины
нормостеники (7,0)* гиперстеники (6,0) гипостеники (6,5) с развитой мускулатурой (7,5) нормостеники (6,5) гиперстеники (5,5) гипостеники (6,0) с развитой
мускулатурой (7,0)
40 2800 2400 2600 3000 2600 2200 2400 2800
45 3150 2700 2920 3370 2920 2470 2700 3150
50 3500 3000 3250 3750 3250 2750 3000 3500
55 3850 3300 3570 4120 3570 3020 3300 3850
60 4200 3600 3900 4500 3900 3300 3600 4200
65 4550 3900 4220 4870 4220 3570 3900 4550
70 4900 4200 4550 5250 4550 3850 4200 4900
75 5250 4500 4870 5620 4870 4120 4500 5250
80 5600 4800 5200 6000 5200 4400 4800 5600
85 5950 5100 5520 6380 5520 4670 5100 5950
90 6300 5400 5850 6750 5850 4950 5400 6300
95 6650 5700 6170 7120 6170 5220 5700 6650

В венах циркулирует 70—80 % крови, в артериях — 15—20 % и в капиллярах 5—7,5 % [Малышев В. Д., 1985]. В целом в сердечно-сосудистой системе циркулирует 80 %, в паренхиматозных органах — 20 % ОЦК.

ОЦК характеризуется относительным постоянством. Это обеспечивается механизмами саморегуляции. Регуляция ОЦК является сложным и многоступенчатым процессом, но в конечном итоге он сводится к перемещению жидкости между кровью и внесосудистым пространством и к изменениям выведения жидкости из организма [Левите Е. М. и др., 1975; Селезнев С. А. и др., 1976; Клецкин С. 3., 1983].

В то же время ОЦК — величина, весьма вариабельная даже для одного человека в зависимости от его физического статуса и состояния гомеостаза. Люди, систематически занимающиеся спортом, имеют большой ОЦК. На величину ОЦК влияют возраст, пол, профессия, температура окружающей среды, величина атмосферного давления и другие факторы.

В ответ на острую кровопотерю в организме развиваются патофизиологические изменения, носящие сначала компенсаторно-защитный характер и обеспечивающие сохранение жизни. Некоторые из них мы рассмотрим ниже.


«Инфузионно-трансфузионная терапия острой кровопотери»,
Е.А. Вагнер, В.С. Заугольников

Веномоторный эффект компенсирует потерю 10—15 % ОЦК (500—700 мл) у взрослого человека, если тот не страдает каким-либо хроническим заболеванием и у него нет признаков гиповолемического шока или дефицита ОЦК. Такая «централизация» кровообращения биологически целесообразна, ибо какое-то время сохраняется кровоснабжение жизненно важных органов (мозг, сердце, легкие). Однако сама по себе она может явиться причиной развития тяжелых…


Реакция системного кровотока при острой кровопотере и геморрагическом шоке вначале дают защитный эффект. Однако длительная вазоконстрикция в связи с развитием ацидоза и накоплением повышенных концентраций тканевых метаболитов — вазодилататоров приводит к изменениям, которые считают ответственными за развитие декомпенсированного обратимого и необратимого шока. Так, сокращение артериол ведет к уменьшению тканевого кровотока и оксигенации, вызывая снижение рН…


Реакции, развивающиеся в ответ на снижение ОЦК, приводят к снижению объемного кровотока в тканях и развитию компенсаторных механизмов, направленных на коррекцию сниженного кровотока. Одним из таких компенсаторных механизмов является гемодилюция — поступление внесосудистой, внеклеточной жидкости в сосудистое русло. При геморрагическом шоке наблюдается прогрессирующая гемодилюция, которая возрастает с тяжестью шока. Гематокрит служит показателем уровня гемодилюции. В…


Восполнение дефицита белков плазмы происходит за счет мобилизации лимфы из всех лимфатических сосудов. Под воздействием повышенных концентраций адреналина и возбуждения симпатической нервной системы развивается спазм мелких лимфатических сосудов. Содержащаяся в них лимфа выталкивается в венозные коллекторы, чему способствует пониженное венозное давление. Объем лимфы в грудном лимфатическом протоке после кровотечения быстро увеличивается. Это способствует увеличению ОЦК…


Периферический кровоток зависит не только от перфузионного артериального давления, ОЦК и тонуса сосудов. Важная роль принадлежит реологическим свойствам крови и в первую очередь ее вязкости. Симпатико-адреналовая стимуляция приводит к пре- и посткапиллярной вазоконстрикции, в результате чего значительно уменьшается тканевая перфузия. Тканевый кровоток в капиллярах замедляется, что создает условия для агрегации эритроцитов и тромбоцитов и развития…


Расстройства кровообращения при острой кровопотере и геморрагическом шоке и массивная инфузионная терапия могут вызвать дыхательную недостаточность, которая нарастает через несколько часов после операции. Она проявляется нарушением легочно-капиллярной мембранной проницаемости — интерстициальным отеком легкого, т. е. одним из вариантов «шокового легкого». Травма и острая кровопотеря вызывают гипервентиляцию. При геморрагическом шоке минутная вентиляция обычно в 1 1/2—2…


Экспериментальные и клинические исследования показали, что при острой кровопотере отмечается снижение почечного кровотока на 50—70 % с селективным снижением кортикального кровотока . Кортикальный кровоток составляет приблизительно 93 % почечного. Селективное снижение почечного -кровотока вследствие преклубочковой артериальной вазоконстрикции снижает клубочковое давление до уровня, при котором клубочковая фильтрация уменьшается или прекращается, развиваются олигурия или анурия. Гемодинамические…


Острая кровопотеря, особенно массивная, часто вызывает нарушения функции печени. Они обусловлены в первую очередь снижением печеночного кровотока, главным образом артериального . Возникающая ишемия печени приводит к развитию центролобу-лярного некроза IRauber, Floguet, 1971]. Нарушается функция печени: возрастает содержание трансаминазы, снижается количество протромбина, наблюдаются гипо-альбуминемия и гиперлакцидемия. Вследствие рассасывания гематомы или в результате массивной…


Показателем изменения метаболизма является образование в качестве конечного продукта молочной кислоты вместо нормального конечного продукта аэробного метаболизма — СO2. В результате развивается метаболический ацидоз. Количество буферных оснований прогрессивно снижается, и хотя рано развивается респираторная компенсация, при геморрагическом шоке она часто неадекватна. Изучая изменения метаболизма у больных с кровопотерей и шоком А. Лабори (1980) установил, что…


Острая кровопотеря в результате уменьшенного венозного возраста (абсолютная или относительная гиповолемия) приводит к снижению сердечного выброса. В связи с освобождением катехоламинов в окончаниях постганглионарных симпатических нервов прекапиллярной и посткапиллярной частей сосудистой системы происходит максимальная стимуляция адренокортикальной секреции. Реакции организма на острую уровопотерю «Инфузионно-трансфузионная терапия острой кровопотери»,Е.А. Вагнер, В.С. Заугольников


– это патологическое состояние, обусловленное быстрым уменьшением объема циркулирующей крови. Проявляется снижением артериального давления, тахикардией, жаждой, тошнотой, головокружениями, предобморочными состояниями, потерей сознания и бледностью кожи. При потере большого объема жидкости расстройства усугубляются, следствием гиповолемического шока становятся необратимые повреждения внутренних органов и смерть. Диагноз выставляется на основании клинических признаков, результатов анализов и данных инструментальных исследований. Лечение – неотложная коррекция нарушений (внутривенные инфузии, глюкокортикоиды) и устранение причины развития гиповолемического шока.

МКБ-10

R57.1

Общие сведения

Гиповолемический шок (от лат. hypo – ниже, volume – объем) – состояние, возникающее вследствие быстрого уменьшения объема циркулирующей крови. Сопровождается изменениями со стороны сердечно-сосудистой системы и острыми нарушениями обмена: снижением ударного объема и наполнения желудочков сердца, ухудшением тканевой перфузии, гипоксией тканей и метаболическим ацидозом. Является компенсаторным механизмом, призванным обеспечить нормальное кровоснабжение внутренних органов в условиях недостаточного объема крови. При потере большого объема крови компенсация оказывается неэффективной, гиповолемический шок начинает играть разрушительную роль, патологические изменения усугубляются и приводят к смерти больного.

Лечением гиповолемического шока занимаются реаниматологи. Лечение основной патологии, являющейся причиной развития этого патологического состояния, могут осуществлять травматологи-ортопеды , хирурги, гастроэнтерологи, инфекционисты и врачи других специальностей.

Причины

Существует четыре основных причины развития гиповолемического шока: безвозвратная потеря крови при кровотечениях; безвозвратная потеря плазмы и плазмоподобной жидкости при травмах и патологических состояниях; депонирование (скопление) большого количества крови в капиллярах; потеря большого количества изотонической жидкости при рвоте и диарее. Причиной безвозвратной потери крови может стать наружное или внутреннее кровотечение в результате травмы или оперативного вмешательства, желудочно-кишечное кровотечение , а также секвестрация крови в поврежденных мягких тканях или в области перелома.

Потеря большого количества плазмы характерна для обширных ожогов. Причиной потери плазмоподобной жидкости становится ее скопление в просвете кишечника и брюшной полости при перитоните , панкреатите и кишечной непроходимости . Депонирование большого количества крови в капиллярах наблюдается при травмах (травматический шок) и некоторых инфекционных заболеваниях. Массивная потеря изотонической жидкости в результате рвоты и/или диареи возникает при острых кишечных инфекциях : холере , гастроэнтеритах различной этиологии, стафилококковой интоксикации, гастроинтестинальных формах сальмонеллеза и т. д.

Патогенез

Кровь в организме человека находится в двух функциональных «состояниях». Первое – циркулирующая кровь (80-90% от всего объема), доставляющая кислород и питательные вещества к тканям. Второе – своеобразный запас, не участвующий в общем кровотоке. Эта часть крови находится в костях, печени и селезенке. Ее функция – поддержание необходимого объема крови в экстремальных ситуациях, связанных с внезапной потерей значительной части ОЦК. При уменьшении объема крови происходит раздражение барорецепторов, и депонированная кровь «выбрасывается» в общий кровоток. Если этого оказывается недостаточно, срабатывает механизм, призванный защитить и сохранить головной мозг, сердце и легкие. Периферические сосуды (сосуды, снабжающие кровью конечности и «менее важные» органы) сужаются, и кровь продолжает активно циркулировать только в жизненно важных органах.

Если недостаток кровообращения не удается скомпенсировать, централизация еще больше усиливается, спазм периферических сосудов нарастает. В последующем из-за истощения этого механизма спазм сменяется параличом сосудистой стенки и резкой дилатацией (расширением) сосудов. В результате значительная часть циркулирующей крови перемещается в периферические отделы, что ведет к усугублению недостаточности кровоснабжения жизненно важных органов. Эти процессы сопровождаются грубыми нарушениями всех видов тканевого обмена.

Выделяют три фазы развития гиповолемического шока: дефицит объема циркулирующей крови, стимуляция симпатоадреналовой системы и собственно шок.

  • 1 фаза – дефицит ОЦК. Из-за дефицита объема крови уменьшается венозный приток к сердцу, снижается центральное венозное давление и ударный объем сердца. Жидкость, ранее находившаяся в тканях, компенсаторно перемещается в капилляры.
  • 2 фаза – стимуляция симпатоадреналовой системы. Раздражение барорецепторов стимулирует резкое повышение секреции катехоламинов. Содержание адреналина в крови увеличивается в сотни раз, норадреналина – в десятки раз. Благодаря стимуляции бета-адренергических рецепторов увеличивается тонус сосудов, сократительная способность миокарда и частота сердечных сокращений. Селезенка, вены в скелетных мышцах, коже и почках сокращаются. Таким образом, организму удается поддержать артериальное и центральное венозное давление, обеспечить кровообращение в сердце и мозге за счет ухудшения кровоснабжения кожи, почек, мышечной системы и органов, иннервируемых блуждающим нервом (кишечника, поджелудочной железы, печени). В течение короткого промежутка времени этот механизм эффективен, при быстром восстановлении ОЦК следует выздоровление. Если же дефицит объема крови сохраняется, в дальнейшем на первый план выходят последствия продолжительной ишемии органов и тканей. Спазм периферических сосудов сменяется параличом, большой объем жидкости из сосудов переходит в ткани, что влечет за собой резкое снижение ОЦК в условиях начального дефицита количества крови.
  • 3 фаза – собственно гиповолемический шок. Дефицит ОЦК прогрессирует, венозный возврат и наполнение сердца уменьшаются, АД снижается. Все органы, включая жизненно важные, не получают необходимого количества кислорода и питательных веществ, возникает полиорганная недостаточность.

Ишемия органов и тканей при гиповолемическом шоке развивается в определенной последовательности. Сначала страдает кожа, затем – скелетные мышцы и почки, потом – органы брюшной полости, а на заключительном этапе – легкие, сердце и мозг.

Классификация

Для оценки состояния больного и определения степени гиповолемического шока в травматологии и ортопедии широко используется классификация американской коллегии хирургов.

  • Потеря не более 15% ОЦК – если больной находится в горизонтальном положении, симптомы кровопотери отсутствуют. Единственным признаком начинающегося гиповолемического шока может быть увеличение ЧСС более, чем на 20 в мин. при переходе пациента в вертикальное положение.
  • Потеря 20-25% ОЦК – незначительное снижение АД и учащение пульса. При этом систолическое давление не ниже 100 мм рт. ст., пульс не более 100-110 уд/мин. В лежачем положении АД может соответствовать норме.
  • Потеря 30-40% ОЦК – снижение АД ниже 100 мм рт. ст. в положении лежа, пульс более 100 уд/мин, бледность и похолодание кожных покровов, олигурия.
  • Потеря более 40% ОЦК кожные покровы холодные, бледные, отмечается мраморность кожи. АД снижено, пульс на периферических артериях отсутствует. Сознание нарушено, возможна кома .

Симптомы гиповолемического шока

Клиническая картина шокового состояния зависит от объема и скорости кровопотери и компенсаторных возможностей организма, которые определяются рядом факторов, в том числе возрастом пациента, его конституцией, а также наличием тяжелой соматической патологии, в особенности заболеваний легких и сердца. Основными признаками гиповолемического шока являются прогрессирующие учащение пульса (

Лечение гиповолемического шока

Основная задача на начальном этапе терапии – обеспечить достаточное кровоснабжение жизненно важных органов, устранить дыхательную и циркуляторную гипоксию. Выполняют катетеризацию центральной вены (при значительном уменьшении ОЦК проводят катетеризацию двух или трех вен). Пациенту с гиповолемическим шоком вводят декстрозу, кристаллоидные и полиионные растворы. Скорость введения должна обеспечить максимально быструю стабилизацию АД и его поддержание на уровне не ниже 70 мм рт. ст. При отсутствии эффекта от перечисленных препаратов проводят инфузию декстрана, желатина, гидроксиэтилкрахмала и других синтетических плазмозаменителей.

Если гемодинамические показатели не стабилизируются, производят внутривенное введение симпатомиметиков (норэпинефрина, фенилэфрина, допамина). Одновременно выполняют ингаляции воздушно-кислородной смесью. По показаниям проводят ИВЛ . После определения причины снижения ОЦК выполняют хирургический гемостаз и другие мероприятия, направленные на предотвращение дальнейшего уменьшения объема крови. Корректируют гемическую гипоксию, производя инфузии компонентов крови и натуральных коллоидных растворов (протеина, альбумина).

Объём циркулирующей крови (ОЦК)

Кислородтранспортные возможности организма зависят от объёма крови и содержания в ней гемоглобина.

Объём циркулирующей крови в покое у молодых женщин составляет в среднем 4,3л, у мужчин-5,7л. При нагрузке ОЦК сначала увеличивается, а затем уменьшается на 0,2-0,3л из-за оттока части плазмы из расширенных капилляров в межклеточное пространство работающих мышц.При длительных упражнениях среднее значение ОЦК у женщин равно 4 л, у мужчин-5,2л. Тренировка выносливости ведёт к повышению ОЦК. При нагрузке максимальной аэробной мощности ОЦК у тренированных мужчин в среднем равен 6,42л

ОЦК и её составляющие: объём циркулирующей плазмы(ОЦП) и объём циркулирующих эритроцитов(ОЦЭ) повышаются при занятиях спортом. Увеличение ОЦК является специфическим эффектом тренировки выносливости. Его не наблюдается у представителей скоростно-силовых видов спорта. С учётом размеров(веса) тела разница между ОЦК у выносливых спортсменов, с одной стороны, и нетренированных людей и спортсменов, тренирующих другие физические качества, с другой, в среднем составляет более 20%. Если ОЦК у спортсмена, тренирующего выносливость, равна 6,4литра (95,4мл на 1кг веса тела), то у нетренированных она равна5,5 л (76,3мл/кг веса тела).

В таблице 9 приведены показатели ОЦК,ОЦЭ,ОЦП и количества гемоглобина на 1 кг веса тела у спортсменов с различной направленностью тренировочного процесса.

Таблица 9. Показатели ОЦК,ОЦЭ,ОЦП и количества гемоглобина у спортсменов с различной направленностью тренировочного процесса.

Из таблицы 9 следует, что при увеличении ОЦК у выносливых спортсменов пропорционально увеличивается и общее количество эритроцитов и гемоглобина крови. Это значительно повышает общую кислородную ёмкость крови и способствует увеличению аэробной выносливости.

Благодаря увеличению ОЦК растёт центральный объём крови и венозный возврат к сердцу, что обеспечивает большой СО крови. Увеличивается кровенаполнение альвеолярных капилляров, что повышает диффузную способность лёгких. Увеличение ОЦК позволяет направлять большее количество крови в кожную сеть и таким образом увеличивает возможность организма для теплоотдачи во время длительной работы.

В период врабатывания АД,СО,СВ, АВР-О2 растут медленнее чем ЧСС. Причина этого- медленный рост(2-3мин) объёма циркулирующей крови вследствие медленного выхода крови из депо. Быстрый рост ОЦК может оказать травмирующую нагрузку на сосудистое русло.

Во время нагрузок большой аэробной мощности через сердце прокачивается большое количество крови с высокой скоростью. Излишек плазмы даёт резерв, позволяющий избежать гемоконцентрацию и увеличение вязкости. То есть у спортсменов увеличение ОЦК, обусловленое больше увеличением объёма плазмы, чем объёмом эритроцитов, приводит к снижению показателя гематокрита (вязкости крови) по сравнению с не спортсменами (42,8 против44,6).

Благодаря большому объёму плазмы уменьшается концентрация в крови продуктов тканевого обмена, например молочной кислоты. Поэтому концентрация лактата при анаэробной нагрузке растёт медленнее.

Механизм роста ОЦК состоит в следующем: рабочая гипертрофия мышц => возрастание запроса организма в белках => повышение продукции белка печенью => увеличивается выброс белков печенью в кровь => повышается колоидно- осматическое давление и вязкость крови => рост абсорбции воды из тканевой жидкости внутрь сосудов а также происходит задержка воды, поступающей в организм => увеличивается объём плазмы (основу плазмы составляют белки и вода) => рост ОЦК.

«Объём циркулирующей крови - доминирующий фактор хорошо уравновешенного кровообращения.» А.С.Залманов. Тайная мудрость человеческого организма (Глубинная медицина).- Москва: Наука, 1966.- C.33 Уменьшение ОЦК, накопление крови в депо(в печени, в селезёнке, в сети воротной вены) сопровождается уменьшением объёма крови, которая прибывает к сердцу и которая выбрасывается каждой систолой. Внезапное уменьшение ОЦК ведёт за собой острую сердечную недостаточность. За уменьшением объёма крови, естественно, всегда следует серьёзная тканевая и клеточная гипоксия.

ОЦК (по отношению к весу тела) зависит от возраста: у детей до 1 года-11%, у взрослых-7%. На 1кг веса тела у детей 7-12 лет-70мл, у взрослых-50-60мл.

text_fields

text_fields

arrow_upward

У раз­личных субъектов в зависимости от пола, возраста, телосложения, условий жизни, степени физического развития и тренированности Объем Крови на 1 кг массы тела колеблется и составляет от 50 до 80 мл/кг.

Этот показатель в условиях физиологической нормы у индивидуума весьма постоянен .

Объем крови у мужчины массой 70 кг составляет примерно 5,5 л (75-80 мл/кг ),
у взрослой женщины он несколько меньше (около 70 мл/кг ).

У здорового человека, находящегося в лежачем положении 1-2 недели, объем крови может снизиться на 9- 15% от исходного.

Из 5,5 л крови у взрослого мужчины 55-60%, т.е. 3.0-3.5 л, при­ходится на долю плазмы, остальное количество - на долю эритро­цитов .
В течение суток по сосудам циркулирует около 8000-9000 л крови .
Из этого количества приблизительно 20 л выходит в течение суток из капилляров в ткань в результате фильтрации и возвращается вновь (путем абсорбции) через капилляры (16- 18 л) и с лимфой (2-4 л). Объем жидкой части крови, т.е. плазмы (3-3.5 л), существенно меньше, чем объем жидкости во внесосудистом интерстициальном пространстве (9- 12 л) и во внутриклеточном пространстве тела (27-30 л); с жидкостью этих «пространств» плазма находится в динами­ческом осмотическом равновесии (подробнее см.главу 2).

Общий объем циркулирующей крови (ОЦК) условно делят на его часть, активно циркулирующую по сосудам, и часть, которая не участвует в данный момент в кровообращении, т.е. депонированную (в селезенке, печени, почке, легких и др.), но быстро включаемую в циркуляцию при соответствующих гемодинамических ситуациях. Считается, что количество депонированной крови более чем в два раза превышает объем циркулирующей. Депонированная кровь не находится в состоянии полного застоя, некоторая ее часть все время включается в быстрое передвижение, а соответствующая часть бы­стро движущейся крови переходит в состояние депонирования.

Уменьшение или увеличение объема циркулирующей крови у нормоволюмического субъекта на 5- 10% компенсируется изменением емкости венозного русла и не вызывает сдвигов ЦВД. Более зна­чительное увеличение ОЦК обычно сопряжено с увеличением ве­нозного возврата и при сохранении эффективной сократимости сердца приводит к увеличению сердечного выброса.

Важнейшими факторами, от которых зависит объем крови, явля­ются:

1) регуляция объема жидкости между плазмой и интерстициальным пространством,
2) регуляция обмена жидкости между плаз­мой и внешней средой (осуществляется, главным образом, почками),
3) регуляция объема эритроцитной массы.

Нервная регуляция этих трех механизмов осуществляется с помощью :

1) предсердных рецепторов типа А, реагирующих на изменение давления и, следовательно, яв­ляющихся барореиепторами,
2) типа В - реагирующих на растяже­ние предсердий и весьма чувствительных к изменению объема в них крови.

Существенное влияние на объем кропи оказывает инфузия различ­ных растворов. Вливание в вену изотонического раствора хлорида натрия не повышает длительно объем плазмы на фоне нормального объема крови, так как образующийся в организме избыток жидкости быстро выводится путем усиления диуреза. При дегидратации и дефи­ците солей в организме указанный раствор, введенный в кровь в адекватных количествах, быстро восстанавливает нарушенное равнове­сие. Введение в кровь 5% растворов глюкозы и декстрозы вначале увеличивает содержание воды в сосудистом русле, однако следующим этапом является усиление диуреза и перемещение жидкости сначала в интерстициальное, а затем в клеточное пространство. Внутривенное введение растворов высокомолекулярных декстранов на длительный период (до 12-24 ч) повышает объем циркулирующей крови.

Физиология различает два вида гемодинамической нагрузки на желудочки сердца: пред- и постнагрузку.


Это нагрузка объёмом крови, которым заполняется полость желудочка перед началом изгнания. В клинической практике мерой преднагрузки является конечно-диастолическое давление (КДД) в полости желудочка (правого - КДДп, левого - КДДл). Это давление определяется только инвазивным методом. В норме КДДп = 4-7 мм Hg, КДДл = 5-12 мм Hg.


Для правого желудочка косвенным показателем может быть величина центрального венозного давления (ЦВД). Для левого желудочка очень информативным показателем может быть давление наполнения левого желудочка (ДНЛЖ), которое возможно определить неинвазивным (реографическим) методом.


Увеличение преднагрузки

К увеличению преднагрузки (справа или слева) любого происхождения желудочек приспосабливается к новым условиям работы по закону О.Франка и Е.Старлинга. Е.Старлинг так охарактеризовал эту закономерность: "ударный объём пропорционален конечному диастолическому объему":

Суть закона состоит в том, что чем больше растягиваются мышечные волокна желудочка при его избыточном наполнении, тем больше сила их сокращения в последующую систолу.

Правомочность этого закона была подтверждена многочисленными исследованиями, даже на клеточном уровне (сила сокращения кардиомиоцита является функцией длины саркомера перед началом его сокращения). Главный вопрос в законе О.Франка и Е.Старлинга в том, почему сверхнормальное увеличение длины мышечного волокна увеличивает силу его сокращения?

Здесь уместно привести ответ Ф.З.Меерсона (1968 г.). Сила сокращения мышечного волокна определяется количеством актино-миозионовых связей, которые могут возникнуть в мышечном волокне одновременно. Удлинение волокна до определенного предела так меняет взаимное расположение актиновых и миозиновых нитей, что при сокращении возрастает либо количество актино-миозиновых связей (точнее скорость их образования), либо контрактильная сила, которую каждая такая связь развивает.


До какой границы (предела) действует приспособительная реакция О.Франка и Е.Старлинга, когда изменение длины волокна изменяет напряжение, а оно изменяет силу сокращения?

Этот закон действует, пока длина мышечного волокна увеличивается на 45% сверх обычной длины при нормальном заполнении желудочка (т.е. примерно в 1,5 раза). Дальнейший рост диастолического давления в желудочке увеличивает длину мышечного волокна в малой мере, т.к. волокна становятся трудно растяжимыми потому, что в процесс вовлекается трудно растяжимый соединительно-тканный эластический каркас самих волокон.


Ориентиром, контролируемым в клинических условиях, для правого желудочка может быть повышение ЦВД более 120 мм Н 2 О (норма 50-120). Это косвенный ориентир. Непосредственным ориентиром является повышение КДДп до 12 мм Hg. Ориентиром для левого желудочка является увеличение КДДл (ДНЛЖ) до 18 мм Hg. Иными словами, когда КДДп в пределах от 7 до 12 или КДДл в пределах от 12 до 18 мм Hg, то правый или левый желудочек уже работает по закону О.Франка и Е.Старлинга.


При приспособительной реакции О.Франка и Е.Старлинга, УО левого желудочка не зависит от диастолического артериального давления (ДАД) в аорте, а систолическое артериальное давление (САД) и ДАД в аорте не изменяются. Эту приспособительную реакцию сердца S.Sarnoff назвал гетерометрической регуляцией (heteros по греч. - другой; применительно к теме раздела - регуляция посредством другой длины волокна).


Надо отметить, что еще в 1882 г. Fick и в 1895 г. Blix отметили, что "закон сердца таков же, как закон скелетной мышцы, а именно, что механическая энергия, освобождающаяся при переходе из состояния покоя в состояние сокращения, зависит от площади "химически сокращающихся поверхностей", т.е. от длины мышечного волокна".

В желудочках, как и во всей сосудистой системе, какая-то часть объема крови является заполняющей и какая-то часть является растягивающей, она то и создает КДД.


Поскольку приспособительная реакция сердца, подчиняющаяся закону, имеет определенную границу, за которой этот закон О.Франка и Е.Старлинга уже не действует, то возникает вопрос: а можно ли усилить эффект этого закона? Ответ на этот вопрос имеет очень важное значение для врачей анестезистов и интенсивистов. В исследованиях E.H.Sonnenblick (1962-1965 г.г.) было установлено, что при чрезмерной преднагрузке миокард способен значительно увеличивать силу сокращения под воздействием положительно инотропных средств. Изменяя функциональные состояния миокарда посредством воздействия инотропных средств (Са, гликозиды, норадреналин, дофамин) при одном и том же притоке крови (одно и то же растяжение волокон), он получил целое семейство «кривых Е.Старлинга» со смещением кверху от исходной кривой (без действия инотропика).

Рисунок 4. График изменения кривой напряжения без инотропного средства и с ним при одинаковой длине мышечного волокна


Из рисунка 4 видно, что:

1. Увеличение напряжения (Т2) при использовании инотропного средства и неизменной исходной длине мышечного волокна (L1) за тот же отрезок времени (t1) связано с ускорением образования актиномиозиновых связей (V2 > V1);

2. С инотропным средством получается такой же эффект величины Т1, как и без него, за меньший отрезок времени - t2 (3).

3. С инотропным средством получаемый эффект величины Т1 достигается как бы при меньшей длине волокна L2 (3).


Уменьшение преднагрузки.

Обусловлено уменьшением притока крови в полость желудочка. Это может быть вследствии уменьшения ОЦК, сужения сосудов в МКК, сосудистой недостаточности, органических изменений в сердце (стеноз АВ - клапанов справа или слева).


Вначале включаются следующие приспособительные элементы:

1. Усиливается изгнание крови из предсердия в желудочек.

2. Увеличивается скорость расслабления желудочка, что способствует его заполнению, т.к. основная масса крови поступает в фазу быстрого наполнения.

3. Увеличивается скорость сокращения мышечных волокон и возрастания напряжения, благодаря чему поддерживается фракция изгнания и уменьшается остаточный объем крови в полости желудочка.

4. Увеличивается скорость изгнания крови из желудочков, что способствует сохранению продолжительности диастолы и заполнения желудочка кровью.


Если совокупность этих приспособительных элементов оказывается недостаточной, то развивается тахикардия, направленная на поддержание СВ.


Это нагрузка сопротивлением току крови при изгнании её из полости желудочка. В клинической практике мерой постнагрузки является величина общего легочного сопротивления (ОЛС) для МКК, равная в норме 150-350 дин*с*см-5, и общего периферического сосудистого сопротивления (ОПСС) для БКК, равная в норме 1200-1700 дин*с*см-5. Косвенным признаком изменения постнагрузки для левого желудочка может быть величина АДср, равная в норме 80-95 мм Hg.

Однако в физиологии классическим представлением о постнагрузке является давление над полулунными клапанами перед изгнанием крови желудочками. Иными словами это конечно-диастолическое давление над полулунными клапанами в легочной артерии и аорте. Естественно, чем больше периферическое сопротивление сосудов, тем больше конечно-диастолическое давление над полулунными клапанами.


Увеличение постнагрузки.

Такая ситуация возникает при функциональном сужении артериальных периферических сосудов, хоть в МКК, хоть в БКК. Она может быть обусловлена органическими изменениями в сосудах (первичная лёгочная гипертензия или гипертоническая болезнь). Это может быть при сужении выходного отдела из правого или левого желудочка (подклапанные, клапанные стенозы).


Закон, по которому желудочек приспосабливается к нагрузке сопротивлением, впервые открыл Г.Анреп (1912г., лаборатория Е.Старлинга).

Дальнейшие исследования этого закона были продолжены самим Е.Старлингом и далее многими известными физиологами. Результаты каждого исследования были опорой и толчком к следующему.

Г. Анреп установил, что при увеличении сопротивления в аорте, вначале кратковременно объём сердца увеличивается (похоже на приспособительную реакцию О.Франка и Е.Старлинга). Однако затем объём сердца постепенно уменьшается до новой, больше исходной, величины и далее остается стабильным. При этом, несмотря на увеличение сопротивления в аорте, УО остается прежним.


Приспособительную реакцию сердца по закону Г. Анрепа и А. Хилла при увеличении нагрузки сопротивлением Ф.З.Меерсон объясняет следующим образом (1968 г.): по мере повышения нагрузки сопротивлением количество актиномиозиновых связей увеличивается. А количество свободных центров, способных реагировать между собой, в актиновых и миозиновых волокнах уменьшается. Поэтому с каждой, всё большей, нагрузкой количество вновь образующихся актиномиозиновых связей уменьшается в единицу времени.


Одновременно уменьшается и скорость сокращения, и количество механической и тепловой энергии, освобождающейся при распаде актиномиозиновых связей, постепенно приближаясь к нулю.

Очень важно, что количество актиномиозиновых связей увеличивается, а их распад уменьшается. Это означает, что с увеличением нагрузки наступает пересократимость актиномиозиновых волокон, что и ограничивает эффективность работы сердца.


Итак, когда нагрузка сопротивлением увеличивается на 40-50%, адекватно ей увеличивается мощность и сила мышечного сокращения. При большем увеличении нагрузки эффективность этой приспособительной реакции утрачивается из-за потери мышцей способности расслабляться.


Другим фактором, со временем ограничивающим эту приспособительную реакцию, является, как было установлено Ф.З.Меерсоном и его сотрудниками (1968 г.), снижение сопряжения окисления и фосфорилирования на 27-28% на участке - «цитохром с» - «кислород», при этом в миокарде уменьшается количество АТФ и особенно креатинфосфата (КФ).

Значит, закон Г. Анрепа и А. Хилла обеспечивает приспособление сердечной мышцы к нагрузке сопротивлением путём увеличения мощности желудочка, приводящей к увеличению силы сокращения без изменения исходной длины мышечного волокна.


Приспособительную реакцию Г. Анрепа и А. Хилла S.Sarnoff назвал гомеометрической регуляцией (homoios по греч. - подобный; применительно к теме раздела - регуляция посредством такой же длины волокна).

Здесь также важен вопрос: можно ли усилить эффект закона Г. Анрепа и А. Хилла? Исследования E.H. Sonnenblick (1962-1965 г.г.) показали, что при чрезмерной постнагрузке миокард способен увеличивать мощность, скорость и силу сокращения под воздействием положительно инотропных средств.

Уменьшение постнагрузки.

Связано с уменьшением давления над полулунными клапанами. При нормальном ОЦК уменьшение постнагрузки становится возможным только при единственном обстоятельстве - при увеличении объема сосудистого русла, т.е. при сосудистой недостаточности.

Уменьшение давления над полулунными клапанами способствует укорочению периода повышения внутрижелудочкового давления и уменьшению самой величины этого давления перед началом изгнания крови. Это уменьшает потребность миокарда в кислороде и его энергозатраты на напряжение.

Однако все это уменьшает линейную и объемную скорость кровотока. В связи с этим уменьшается и венозный возврат, что ухудшает наполнение желудочков. В таких условиях единственно возможной приспособительной реакцией становится увеличение ЧСС, направленное на поддержание СВ. Как только тахикардия станет сопровождаться снижением СВ, эта приспособительная реакция переходит в разряд патологической.


Совокупность всех исследований, выполненных О.Франком, Е.Старлингом, Г.Анрепом, А.Хиллом и другими физиологами того периода позволила выделить два варианта сокращения сердечного волокна: изотоническое и изометрическое сокращения.


В соответствии с этим выделены два варианта работы желудочков сердца.


1. Когда желудочек работает преимущественно с нагрузкой по объему - он работает по варианту изотонического сокращения. При этом тонус мышцы изменяется в меньшей мере (изотония), преимущественно изменяется длина и поперечное сечение мышцы.


2. Когда желудочек работает преимущественно с нагрузкой по сопротивлению - он работает по варианту изометрического сокращения. При этом преимущественно изменяется напряжение мышцы (тонус), а её длина и поперечное сечение изменяются в меньшей мере или почти не изменяются (изометрия).

При работе желудочка с нагрузкой по сопротивлению (даже при функциональном изменении ОЛС или ОПСС) многократно увеличивается потребность миокарда в кислороде. Поэтому исключительно важным является обеспечение такого больного в первую очередь кислородом.

Врачам нередко приходится усиливать работу сердца инотропными средствами. В физиологии кровообращения (в т.ч. и клинической) под инотропизмом понимается (Ф.З. Меерсон, 1968 г.) регулирование скорости сокращения и расслабления, и поэтому мощности и эффективности работы сердца при неизменных размерах желудочка.

Инотропизм направлен не на сверхнормальное увеличение силы сокращений сердца, а на поддержание силы сокращений, в лучшем случае близкой к норме.

Инотропизм отличается от закона О.Франка и Е.Старлинга тем, что при этом не изменяется исходная длина волокон миокарда. Он отличается от закона Г. Анрепа и А. Хилла тем, что при этом увеличивается не только скорость сокращения, но и (главное!) скорость расслабления волокон миокарда (чем предупреждается пересократимость, или контрактура, миокарда).


Однако при искусственной инотропной регуляции работы сердца норадреналином и др. аналогичными средствами может быть серьезная опасность. Если резко и значительно уменьшить введение инотропного средства или прекратить введение его, то может резко снизиться тонус миокарда.

Возникает острая тоногенная дилатация желудочка. Его полость увеличивается, резко снижается внутрижелудочковое давление. В этих условиях, чтобы достигнуть прежней величины напряжения необходимы большие затраты энергии.


Процесс наращивания напряжения является самым главным потребителем энергии в сердечном цикле. Кроме того, он идет в первую очередь. В физиологии существует закон, что первый процесс всегда старается как можно полнее использовать наличную энергию, чтобы завершить его целиком и полностью. Остаток энергии расходуется на выполнение следующего процесса и т.д. (т.е. каждый предыдущий процесс как Людовик XV: "после нас хоть потоп").

За процессом увеличения напряжения идет работа по перемещению крови из желудочков в сосуды. Из-за того, что на напряжение затрачивается почти вся наличная энергия, а на изгнание ее недостает, от напряжения начинает отставать работа желудочков по перемещению крови. В результате общая эффективность сердца снижается. С каждым таким неполноценным сокращением прогрессивно увеличивается остаточный объем крови в полости желудочка и, в конце концов, наступает асистолия.