Экстремальная точка. Как найти экстремумы функции

Экстремальная точка. Как найти экстремумы функции
Экстремальная точка. Как найти экстремумы функции

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



В чем состоят особенности схемы построения деятельности бизнес-инкубатора
Бизнес-инкубаторы рассматриваются, прежде всего, как часть инфраструктуры поддержки малого предпринимательства, но одновременно они являются инструментом экономической, социальной, структурной и инновационной политики. Технологические инкубаторы - это один из инструментов политики для формирования адаптивной, динамичной, конкурентоспособной национальной инновационной


Дракула (англ. Dracula) — персонаж литературных произведений и кинофильмов, вампир.Был придуман ирландским писателем Брэмом Стокером для романа «Дракула» (1897). По распространённому мнению, прототипом для этого персонажа послужила реальная историческая личность — Влад III Цепеш (Драку

Где найти информацию о телефоне Sony Ericsson K790
Информацию о телефоне Sony Ericsson K790 можно найти на следующих сайтах:www.mobiset.ru - информация о телефоне Sony Ericsson K790 на mobiset.ru ;www.mobidrive.ru - информация о телефоне Sony Ericsson K790 на mobid

Кто входит в состав группы "Мельница"
www.melnitsa.net — официальный сайт группы Мельница «Мельница» — российская фолк-рок группа из Москвы. Основана 15 октября 1999 года.Группа «Мельница» играет акустическую и электроакустическую музыку. Инструменты: виолончель, флей

Что такое лютня
Лютня — струнный щипковый музыкальный инструмент. В своей классической форме она имеет изящный корпус в форме половинки груши, шейку с ладами, колковую коробку, отогнутую назад под углом к шейке, звуковое отверстие в виде розетки и 11 струн (пять пар и одинарная дискантовая струна). Слово «лютня» употребляется также в самом общем смысле

Что такое томат (помидор)
Томат (помидор) — растение рода паслён, семейства Паслёновые, одно или многолетняя трава. Возделывается как овощная культура. Плоды томата известны под названием помидоры. Вид плода — ягода. ИсторияРодина — Южная Америка, где до сих пор встречаются дикие и полукультурные формы томата. В середине XVI века томат попал в Испанию, По

Где найти образец склонения субстантивированных существительных
Склонение имён существительных Склонение — это изменение имён существительных (и других именных частей речи) по падежам и числам. В русском языке два числа: единственное (окно, парта) и множественное (окна, парты); шесть падежей (по школьной программе). Падеж Вопросы падежей Именительный кто? что? Родительный кого? чего? Датель

Какие актрисы исполнили главные роли в сериале "Краткий курс счастливой жизни" на Первом канале
В российском телевизионном сериале «Краткий курс счастливой жизни», снятом в 2011 году режиссером Валерией Гай Германикой для Первого канала, главные роли исполнили 4 актрисы: Алиса Хазанова исполнила роль Любы; Светлана Ходченкова исполнила роль Саши; Анна Слю исполнила роль Ани; Ксения Громова исполнила роль Кати. Во второстепе

Чему равен синус 90 градусов
Синус — одна из тригонометрических функций, обозначется sin. В прямоугольном треугольнике синус острого угла равен отношению катета, лежащего напротив этого угла (противолежащего катета), к гипотенузе.Значения синусов для часто встречающихся углов (π — число пи, √ — корень квадра

Где в интернете есть платные аудиокурсы английского языка
Платные аудиокурсы английского языка можно найти под приведенными ниже ссылками: shop.iddk.ru — аудиокурсы английского языка на диске; london.ru — аудиокурсы на дисках, а так же книги; volxv.ru — аудио-видео курсы английского языка; ozon.ru — аудиокурсы на дисках


Информационно-рекрутинговые порталы Superjob.ru - рекрутинговый портал Superjob.ru работает на российском рынке онлайн-рекрутмента с 2000 года и является лидером среди ресурсов, предлагающих поиск работы и персонала. Ежедневно в базу данных сайта добавляется более 80 000 резюме специалистов и более 10 000 вакансий.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

© БГЭУ Лекция № 2

проф. Дымков М. П.

Замечание 1. Обратное утверждение звучит несколько иначе. Если

функция возрастает на промежутке, то f ′ (x 0 )≥ 0 или не существует.

Пример 1.

y = x3

возрастает на

всей числовой

соответственно

f (x )> 0 , но в точке

x = 0 производная

f (0)= 0.

Пример 2 . Функция

x ≥ 0 ,

не имеет производной в точке

х=0

x < 0

(левая и правая производная различны), однако она возрастает при всех значениях х , в том числе и в точкех = 0.

Замечание 2. Опираясь на более «мягкие» условия, можно сформулировать прямую теорему: если производная функции, непрерывной на промежутке, неотрицательна, то функция на этом промежутке не убывает. Тогда прямая и обратная теоремы на формализованном языке звучат так:

для того,

чтобы непрерывная на промежутке функция y = f(x) была

неубывающей

этом промежутке, необходимо

и достаточно, чтобы

f ′ (x0 ) ≥ 0 .

Понятие экстремума

Определение.

x0 называется точкой

локального максимума

функции f (x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≤ f(x0 ) .

Определение. Точка x0 называется точкой локального минимума функции f(x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≥ f(x0 ) .

Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Максимум и минимум функции называются ее локальными экстремумами

(extremum – крайний).

Определение. Точка x0 называется точкой строгого локального максимума (минимума) функции y= f(x) , если для всех х из окрестности точки x0 верно строгое неравенство f(x) < f(x0 ) (соответственно

f (x) > f(x0 ) ).

Замечание. В приведенном определении локального экстремума мы не предполагаем непрерывности функции в точкеx 0 .

X ≠ 0 ,

разрывна в точке

х = 0, но имеет в этой

Функция y =

x = 0

точке максимум, поскольку существует окрестность точки х = 0, в которойf (x )< f (x 0 ).

Наибольшее (наименьшее) значение функции на промежутке называется глобальным экстремумом. Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.

Необходимое условие экстремума

Теорема 2. (о необходимом условии экстремума).

Если функция y = f(x) имеет экстремум в точке x0 , то ее производная f′ (x0 ) в этой точке либо равна нулю, либо не существует.

◄Если в точке x 0 функция имеет экстремум и дифференцируема, то в

некоторой окрестности этой точки выполнены условия теоремы Ферма, следовательно, производная функции в этой точке равна нулю.

Но функция y = f (x ) может иметь экстремум и не быть дифференцируемой в этой точке. Достаточно указать пример. Примером может

служить функция y =

которая имеет минимум в точке

x = 0,

однако не

дифференцируема в этой точке.

Замечание

Геометрическую

иллюстрацию теоремы дает Рис.1. Функция

y = f (x ), график которой представлен на этом

y = f (x)

рисунке, имеет экстремумы в точках x 1 , x 3 , x 4 ,

производная

существует,

она равна нулю, в

обращается

бесконечность.

точках x 2 ,

функция экстремума не имеет,

причем в точке x 2 производная обращается в

бесконечность, в точке x 5

производная равна

Замечание 2. Точки, в которых выполняется необходимое условие

экстремума для непрерывной функции, называются критическими

Они определяются из уравнения

f (x )= 0

(стационарные

точки) или f

(x )= ∞ .

Замечание 3 . Не в каждой своей критической точке функция обязательно имеет максимум или минимум.

Пример 4. Рассмотрим функциюy = x 3 . Критической для этой функции

является точка х = 0, что следует из уравненияf ′ (x )= 3x 2 = 0. Однако эта функция при всехх является возрастающей и экстремума не имеет.

© БГЭУ Лекция № 2

Исследование функций с помощью производных проф. Дымков М. П.

Теорема 3.

(о достаточных условиях экстремума).

Пусть для

y = f(x) выполнены следующие условия:

1) y = f(x)

непрерывна в окрестности точки x0 ;

(x )= 0

f (x) = ∞

меняет свой знак.

(x) при переходе через точку x0

Тогда в точке x = x0 функция y= f(x) имеет экстремум:

минимум , если при переходе через точку x0

производная меняет свой знак

с минуса на плюс;

максимум , если при переходе через точку

x0 производная меняет свой

знак с плюса на минус.

f (x) при переходе через точку x0 не меняет своего

Если производная

знака, экстремума в точке x = x0 нет.◄

Условия теоремы можно свести в следующую таблицу

Знак производной

Экстремум

Максимум

Так как по условию f (x )< 0 приx < x 0 , то на левом относительно точки

x 0 интервале функция

убывает. Так как f (x )> 0 приx > x 0 ,

y = f(x)

относительно точки

интервале

функция f (x ) возрастает.

Следовательно,

f (x0 )

есть наименьшее значение функции f (x ) в окрестности

x 0 , а это означает, чтоf (x 0 )

есть локальный минимум функции

f (x) .

Если при переходе с левого интервала на правый функция продолжает убывать, то в точке x 0 не будет достигаться минимальное значение функции

(экстремума нет).

Аналогично доказывается существование максимума.

На рис. 2 a-h представлены возможные случаи наличия или отсутствия экстремума непрерывной функции, производная которой в критической точке равна нулю или обращается в бесконечность.

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

Замечание.

Если условие непрерывности функции в

не выполнено, то вопрос о наличии

экстремума остается открытым.

Пример 5.

Рассмотрим

разрывную

X + 1,

x ≤ 0,

(рис.3). Производная

этой функции меняет знак

f (x) =

x > 0

переходе через точку x 0 = 0 ,

однако функция в точке

x 0= 0

экстремума не

Пример 6. Пусть дана функция

X ≠ 0,

(рис.4). Как видно из рисунка,

f (x)

f (x) =

x = 0

имеет локальный максимум в точке

x 0= 0

Однако функция

имеет разрыв в точке x 0 = 0 .

Замечание

функция имеет в точке x 0 экстремум, например,

минимум, то необязательно слева от точки

x 0 функция монотонно убывает, а

справа от x 0 монотонно возрастает.

Пример 7. Пусть дана функция

2 − cos

X ≠ 0,

f (x) =

x = 0

y = 3 x2

y = x

Можно показать, что в

х = 0

непрерывна

Производная функции

f (x) = 2 x

− sin

в любой окрестности

точки х = 0 меняет знак бесконечно много раз. Поэтому функцияf (x ) не

является монотонно убывающей или возрастающей ни слева, ни справа от точки х = 0.

Схема исследования функции на экстремум:

1) найти производную f ′ (x );

2) найти критические точки, т.е. такие значения х , в которыхf ′ (x )= 0 или

f ′ (x ) = ∞;

3) исследовать знак производной слева и справа от каждой критической

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

точки. Если при переходе через критическую точку

производная f (x )

свой знак с плюса на минус, то в точке x 0

f (x)

имеет максимум, если

знак f (x )

меняется с минуса на плюс,

то в точке x 0

функция f (x )

Если при переходе х через критическую точкуx 0 знакf

(x ) не

меняется, то в точке x 0 функцияf (x ) не имеет ни максимума, ни минимума; 4) найти значения функции в экстремальных точках.

Теорема 4. (2 -ое достаточное условие экстремума). Пусть для функцииy = f (x ) выполнены следующие условия:

1. y = f (x ) непрерывна в окрестности точкиx 0 ,

2. f ′ (x )= 0 в точкеx 0

3. f ′′ (x )≠ 0 в точкеx 0 .

Тогда, в точке x 0

достигается экстремум, причем:

если f ′′ (x 0 )> 0, то в точке

x = x0

y = f(x)

имеет минимум,

f ′′ (x 0 )< 0 , то

x = x0

функция y = f (x ) имеет максимум.

◄ По определению 2-й производнойf

f ′ (x) − f′ (x0 )

) = lim

− x

x→ x0

Но по условию f

) = lim

(x )= 0.

− x

(x )> 0, то

x→ x0

f ′ (x)

в некоторой

окрестности

x = x.

x < x

x − x0

x > x0

дробь положительна,

при условии

положительна, если f (x )< 0 .

f (x ) при переходе через точку

x = x0

меняет знак,

f (x )> 0 . Следовательно,

поэтому есть экстремум. Знак производной меняется с минуса на плюс, значит, это минимум. Аналогично доказывается случай f ′′ (x 0 )< 0 .

Пример 8 . Исследовать на экстремум функциюy = x 2 + 2x + 3. Находим производнуюy ′= 2x + 2 .

1) Находим критические точки, для чего приравниваем к нулю производную: y ′= 2x + 2= 0,→ x 0 = - 1.

2) Изучаем знак производной слева и справа от этой точки (рис. 6).

Поскольку знак производной меняется с минуса на плюс, в точке х = − 1 достигается минимум.

3) Находим величину минимума: ymin (− 1)= 2.

.

3) Исследуем знак у" слева и справа от точкиx = 0. Очевидно,f ′ (x )< 0 ,

минимума данной функции.

4) ymin (0)= 1.

Пример 10.

Исследовать на экстремум функцию y = e -x 2 .

1) Находим первую производную: y ′= - 2xe -x 2 .

2) Приравнивая производную нулю, находим единственную критическую точку x = 0.

3) Далее находим вторую производную: y ′′= − 2e - x 2 + 4x 2 e − x 2 . Ее значение

в точке x = 0 равно -2.

4) Делаем вывод о наличии максимума функции и вычисляем: y max (0)= 1.

Наибольшее и наименьшее значение функции, непрерывной на отрезке

Если функция f (x ) определена и непрерывна на отрезке [а ;b ], то,

согласно 2-й теореме Вейерштрасса, она на этом отрезке достигает своего наибольшего и наименьшего значения.

Если свое наибольшее значение М функцияf (x ) принимает вовнутренней точке x 0 отрезка [а ;b ], тоM = f (x 0 ) будет локальным максимумом функцииf (x ), т. к. в этом случае существует окрестность точкиx 0 такая, что значенияf (x ) для всех точекх из этой окрестности будут не

больше f (x 0 ) .

Однако свое наибольшее значение М функцияf (x )может принимать и на концах отрезка [а ;b ]. Поэтому, чтобы найти наибольшее значениеМ непрерывной на отрезке [а ;b ] функцииf (x ), надо найти все максимумы функции в интервале(а ;b ) и значенияf (x ) на концах отрезка [а ;b ] и выбрать

среди них наибольшее число. Вместо ограничиться нахождением значений Наименьшим значением m непрерывной

исследования на максимум можно функции в критических точках. на отрезке [а ;b ] функцииf (x ) будет

наименьшее число среди всех минимумов функции f (x ) в интервале (a ;b ) и значенийf (a ) иf (b ) .

f ′ (x) -

Исследовать на экстремум функцию y = 3

1) Находим производную y ′=

Это довольно-таки занятный раздел математики, с которым сталкиваются абсолютно все ученики выпускных классов и студенты. Тем не менее далеко не каждому нравится матан. Некоторые не могут понять даже элементарных вещей наподобие, казалось бы, стандартного исследования функции. Данная статья призвана исправить подобную оплошность. Хотите поподробнее узнать об анализе функции? Желаете узнать, что такое точки экстремума и как их найти? Тогда данная статья для вас.

Исследование графика функции

Для начала стоит понять, зачем вообще необходимо анализировать график. Существуют простые функции, начертить которые не составит труда. Ярким примером подобной функции может служить парабола. Начертить ее график не составит труда. Все что необходимо, так это с помощью простого преобразования найти числа, при которых функция принимает значение 0. И в принципе это все что знать для того, чтобы начертить график параболы.

Но что делать, если функция, график которой нам нужно начертить, намного сложнее? Поскольку свойства сложных функций довольно-таки неочевидны, необходимо проводить целый анализ. Только после этого можно изобразить функцию графически. Как же это сделать? Ответ на этот вопрос вы сможете найти в данной статье.

План анализа функции

Первое, что необходимо сделать, так это провести поверхностное исследование функции, в ходе которого мы найдем область определения. Итак, начнем по порядку. Область определения - это совокупность тех значений, которыми функция задается. Проще говоря, это те числа, которые можно использовать в функции вместо х. Для того чтобы определить область определения, необходимо просто взглянуть на запись. К примеру, очевидно, что у функции у (х) = х 3 + х 2 - х + 43 область определения - множество действительных чисел. Ну а с функцией наподобие (х 2 - 2х)/х все немного иначе. Поскольку число в знаменателе не должно равняться 0, то областью определения данной функции будут все действительные числа, помимо нуля.

Далее необходимо найти так называемые нули функции. Это те значения аргумента, при которых вся функция принимает значения ноль. Для этого необходимо приравнять функцию к нулю, подробно ее рассмотреть и совершить некоторые преобразования. Возьмём уже знакомую нам функцию у(х) = (х 2 - 2х)/х. Из школьного курса мы знаем, что дробь равна 0 тогда, когда числитель равен нулю. Поэтому знаменатель мы отбрасываем и начинаем работать с числителем, приравнивая его к нулю. Получаем х 2 - 2х = 0 и выносим х за скобочки. Отсюда х (х - 2) = 0. В итоге получаем, что наша функция равна нулю тогда, когда х равняется 0 или же 2.

Во время исследования графика функции многие сталкиваются с проблемой в виде точек экстремума. И это странно. Ведь экстремумы - это довольно-таки простая тема. Не верите? Убедитесь сами, прочитав данную часть статьи, в которой мы поговорим о точках минимума и максимума.

Для начала стоит разобраться в том, что собой представляет экстремум. Экстремум - это предельное значений, которое достигает функция на графике. Отсюда получается, что существует два крайних значения - максимум и минимум. Для наглядности можно посмотреть на картинку, что расположена выше. На исследованной области точка -1 является максимумом функции у (х) = х 5 - 5х, а точка 1, соответственно, минимумом.

Также не стоит путать между собой понятия. Точки экстремума функции - это те аргументы, при которых заданная функция приобретает крайние значения. В свою очередь, экстремумом называют значение минимумов и максимумов функции. К примеру, вновь рассмотрим рисунок выше. -1 и 1 - это точки экстремума функции, а 4 и -4 - это сами экстремумы.

Нахождение точек экстремума

Но как все-таки найти точки экстремума функции? Все довольно-таки просто. Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х 3 + 2х 2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х 2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.

Также стоит отметить, что на ЕГЭ требуют не просто найти точки экстремума, Но и провести с ними какую-то операцию (прибавить, умножить и т.д.). Именно по этой причине стоит обратить особое внимание на условия задачи. Ведь из-за невнимательности можно потерять баллы.

Важным понятием в математике является функция. С её помощью можно наглядно представить многие процессы, происходящие в природе, отразить с использованием формул, таблиц и изображений на графике взаимосвязь между определёнными величинами. Примером может служить зависимость давления слоя жидкости на тело от глубины погружения, ускорения - от действия на объект определённой силы, увеличения температуры - от передаваемой энергии и многие другие процессы. Исследование функции предполагает построение графика, выяснение её свойств, области определения и значений, промежутков возрастания и убывания. Важным моментом в данном процессе является нахождение точек экстремума. О том, как правильно это делать, и пойдёт разговор далее.

О самом понятии на конкретном примере

В медицине построение графика функции может рассказать о ходе развития болезни в организме пациента, наглядно отражая его состояние. Предположим, по оси ОХ откладывается время в сутках, а по оси ОУ - температура тела человека. На рисунке хорошо видно, как этот показатель резко поднимается, а потом падает. Нетрудно заметить также особые точки, отражающие моменты, когда функция, ранее возрастая, начинает убывать, и наоборот. Это точки экстремума, то есть критические значения (максимальные и минимальные) в данном случае температуры больного, после которых наступают изменения в его состоянии.

Угол наклона

Легко можно определить по рисунку, как изменяется производная функции. Если прямые линии графика с течением времени идут вверх, то она положительна. И чем они круче, тем большее значение принимает производная, так как растет угол наклона. В периоды убывания эта величина принимает отрицательные значения, в точках экстремума обращаясь в ноль, а график производной в последнем случае рисуется параллельно оси ОХ.

Любой другой процесс следует рассматривать аналогичным образом. Но лучше всего об этом понятии может рассказать перемещение различных тел, наглядно показанное на графиках.

Движение

Предположим, некоторый объект движется по прямой, равномерно набирая скорость. В этот период изменение координаты тела графически представляет собой некую кривую, которую математик назвал бы ветвью параболы. При этом функция постоянно возрастает, так как показатели координаты с каждой секундой изменяются всё быстрей. График скорости демонстрирует поведение производной, значение которой также увеличивается. А значит, движение не имеет критических точек.

Так бы и продолжалось бесконечно долго. Но если тело вдруг решит затормозить, остановиться и начать двигаться в другом направлении? В данном случае показатели координаты начнут уменьшаться. А функция перейдёт критическое значение и из возрастающей превратится в убывающую.

На этом примере снова можно понять, что точки экстремума на графике функции появляются в моменты, когда она перестаёт быть монотонной.

Физический смысл производной

Описанное ранее наглядно показало, что производная по сути является скоростью изменения функции. В данном уточнении и заключён её физический смысл. Точки экстремума - это критические области на графике. Их возможно выяснить и обнаружить, вычислив значение производной, которая оказывается равной нулю.

Существует и другой признак, который является достаточным условием экстремума. Производная в таких местах перегиба меняет свой знак: с «+» на «-» в области максимума и с «-» на «+» в районе минимума.

Движение под влиянием силы притяжения

Представим ещё одну ситуацию. Дети, играя в мяч, бросили его таким образом, что он начал двигаться под углом к горизонту. В начальный момент скорость данного объекта являлась самой большой, но под действием силы тяжести начала уменьшаться, причём с каждой секундой на одну и ту же величину, равную приблизительно 9,8 м/с 2 . Это значение ускорения, возникающего под влиянием земной гравитации при свободном падении. На Луне оно бы было примерно в шесть раз меньше.

Графиком, описывающим перемещение тела, является парабола с ветвями, направленными вниз. Как найти точки экстремума? В данном случае это вершина функции, где скорость тела (мяча) принимает нулевое значение. Производная функции становится равной нулю. При этом направление, а следовательно, и значение скорости, меняется на противоположное. Тело летит вниз с каждой секундой всё быстрее, причём ускоряется на ту же величину - 9,8 м/с 2 .

Вторая производная

В предыдущем случае график модуля скорости рисуется как прямая. Данная линия оказывается сначала направлена вниз, так как значение этой величины постоянно убывает. Достигнув нуля в один из моментов времени, далее показатели этой величины начинают возрастать, а направление графического изображения модуля скорости кардинально меняется. Теперь линия направлена вверх.

Скорость, являясь производной от координаты по времени, тоже имеет критическую точку. В этой области функция, вначале убывая, начинает возрастать. Это место точки экстремума производной функции. В данном случае угол наклона касательной становится равным нулю. А ускорение, являясь второй производной от координаты по времени, меняет знак с «-» на «+». И движение из равнозамедленного становится равноускоренным.

График ускорения

Теперь рассмотрим четыре рисунка. На каждом из них отображён график изменения с течением времени такой физической величины, как ускорение. В случае «А» значение его остаётся положительным и постоянным. Это означает, что скорость тела, как и его координата, постоянно увеличивается. Если представить, что объект будет двигаться таким образом бесконечно долго, функция, отражающая зависимость координаты от времени, окажется постоянно возрастающей. Из этого следует, что она не имеет критических областей. Точки экстремума на графике производной, то есть линейно изменяющейся скорости, также отсутствуют.

То же касается и случая «Б» с положительным и постоянно увеличивающимся ускорением. Правда, графики для координаты и скорости здесь будут несколько сложнее.

Когда ускорение стремится к нулю

Рассматривая рисунок «В», можно наблюдать совсем другую картину, характеризующую движение тела. Скорость его графически будет изображаться параболой с ветвями, направленными вниз. Если продолжить линию, описывающую изменение ускорения до пересечения её с осью ОХ, и дальше, то можно представить, что до этого критического значения, где ускорение окажется равным нулю, скорость объекта будет увеличиваться всё медленнее. Точка экстремума производной от функции координаты окажется как раз в вершине параболы, после чего тело кардинально поменяет характер движения и начнёт двигаться в другом направлении.

В последнем случае, «Г», характер движения точно определить невозможно. Здесь известно только, что ускорение за некоторый рассматриваемый период отсутствует. Значит, объект может оставаться на месте или движение происходит с постоянной скоростью.

Задача на сложение координат

Перейдём к заданиям, которые часто встречаются при изучении алгебры в школе и предлагаются для подготовки к ЕГЭ. На рисунке, который представлен ниже, изображён график функции. Требуется вычислить сумму точек экстремума.

Сделаем это для оси ординат, определив координаты критических областей, где наблюдается изменение характеристик функции. Проще говоря, найдём значения по оси ОХ для точек перегиба, а затем перейдём к сложению полученных членов. По графику очевидно, что они принимают следующие значения: -8; -7 ; -5; -3; -2; 1; 3. В сумме это составляет -21, что и является ответом.

Оптимальное решение

Не стоит объяснять, насколько может оказаться важным в выполнении практических заданий выбор оптимального решения. Ведь путей достижения цели бывает много, а наилучший выход, как правило, - всего один. Это бывает крайне необходимо, к примеру, при конструировании судов, космических кораблей и самолётов, архитектурных сооружений для нахождения оптимальной формы данных рукотворных объектов.

Быстроходность средств передвижения во многом зависит от грамотного сведения к минимуму сопротивления, которое они испытывают при перемещении по воде и воздуху, от перегрузок, возникающих под действием гравитационных сил и многих других показателей. Кораблю на море необходимы такие качества, как устойчивость во время шторма, для речного судна важна минимальная осадка. При расчётах оптимальной конструкции точки экстремума на графике наглядно могут дать представление о наилучшем решении сложной проблемы. Задачи такого плана часто решаются в экономике, в хозяйственных областях, во множестве других жизненных ситуаций.

Из античной истории

Задачи на экстремум занимали даже древних мудрецов. Греческие учёные с успехом разгадали тайну площадей и объёмов путём математических вычислений. Это они первыми поняли, что на плоскости из разнообразных фигур, обладающих одним и тем же периметром, наибольшую площадь всегда имеет круг. Аналогичным образом шар наделён максимальным объёмом среди остальных предметов в пространстве с одинаковой величиной поверхности. Решению подобных задач посвятили себя такие известнейшие личности, как Архимед, Евклид, Аристотель, Аполлоний. Найти точки экстремума прекрасно удавалось Герону, который, прибегнув к расчётам, сооружал хитроумные устройства. К ним относились автоматы, перемещающиеся посредством пара, работающие по тому же принципу насосы и турбины.

Строительство Карфагена

Существует легенда, сюжет которой построен на решении одной из экстремальных задач. Результатом делового подхода, который продемонстрировала финикийская царевна, обратившаяся за помощью к мудрецам, стало строительство Карфагена. Земельный участок для этого древнего и прославленного города подарил Дидоне (так звали правительницу) вождь одного из африканских племён. Площадь надела не показалась ему вначале очень большой, так как по договору должна была покрываться воловьей шкурой. Но царевна повелела своим воинам разрезать её на тонкие полосы и составить из них ремень. Он получился настолько длинным, что охватил участок, где уместился целый город.

Истоки математического анализа

А теперь перенесёмся из античных времён в более позднюю эпоху. Интересно, что к осознанию основ математического анализа подтолкнула Кеплера в XVII веке встреча с продавцом вина. Торговец был настолько сведущ в своей профессии, что легко мог определить объём находящегося в бочке напитка, просто опуская туда железный жгут. Размышляя над подобным курьёзом, знаменитый учёный сумел решить для себя эту дилемму. Оказывается, искусные бочары тех времён наловчились изготавливать сосуды таким образом, чтобы при определённой высоте и радиусе окружности скрепляющих колец они имели максимальную вместимость.

Это стало для Кеплера поводом для дальнейших размышлений. Бочары пришли к оптимальному решению методом долгого поиска, ошибок и новых попыток, передавая свой опыт из поколения в поколение. Но Кеплер хотел ускорить процесс и научиться делать то же самое в короткий срок путём математических вычислений. Все его наработки, подхваченные коллегами, превратились в известные ныне теоремы Ферма и Ньютона - Лейбница.

Задача на нахождение максимальной площади

Представим, что мы имеем проволоку, длина которой равна 50 см. Как составить из неё прямоугольник, обладающий наибольшей площадью?

Начиная решение, следует исходить из простых и известных любому истин. Понятно, что периметр нашей фигуры будет составлять 50 см. Он же складывается из удвоенных длин обеих сторон. Это значит, что, обозначив за «Х» одну из них, другую возможно выразить как (25 - Х).

Отсюда получаем площадь, равную Х(25 - Х). Данное выражение можно представить как функцию, принимающую множество значений. Решение задачи требует найти максимальное из них, а значит, следует узнать точки экстремума.

Для этого находим первую производную и приравниваем её нулю. В результате получается простое уравнение: 25 - 2Х = 0.

Из него мы узнаём, что одна из сторон Х = 12,5.

Следовательно, другая: 25 - 12,5 = 12,5.

Получается, что решением задачи будет квадрат со стороной 12,5 см.

Как найти максимальную скорость

Рассмотрим ещё один пример. Представим, что существует тело, прямолинейное движение которого описывается уравнением S = - t 3 + 9t 2 - 24t - 8, где пройденное расстояние выражается в метрах, а время в секундах. Требуется найти максимальную скорость. Как это сделать? Скачала находим скорость, то есть первую производную.

Получаем уравнение: V = - 3t 2 + 18t - 24. Теперь для решения задачи снова нужно найти точки экстремума. Сделать это необходимо тем же способом, что и в предыдущей задаче. Находим первую производную от скорости и приравниваем её к нулю.

Получаем: - 6t + 18 = 0. Отсюда t = 3 с. Это время, когда скорость тела принимает критическое значение. Подставляем полученное данное в уравнение скорости и получаем: V = 3 м/с.

Но как понять, что это именно максимальная скорость, ведь критическими точками функции могут быть наибольшие или наименьшие её значения? Для проверки необходимо найти вторую производную от скорости. Она выражается числом 6 со знаком минус. Это значит, что найденная точка является максимумом. А в случае положительного значения второй производной был бы минимум. Значит, найденное решение оказалось правильным.

Приведённые в качестве примера задачи являются лишь частью из тех, которые возможно решить, умея находить точки экстремума функции. На самом деле их гораздо больше. А подобные знания открывают перед человеческой цивилизацией неограниченные возможности.