Статистическая физика и термодинамика. Статистическая термодинамика Статистическая физика и термодинамика

Статистическая физика и термодинамика. Статистическая термодинамика Статистическая физика и термодинамика

Основные понятия

Основные знания.

Статистическая интерпретация понятий: внутренняя энергия, работа подсистемы, количество теплоты; обоснование первого начала термодинамики с помощью канонического распределения Гиббса; статистическое обоснование третьего термодинамики; свойства макросистем при ; физический смысл энтропии; условия устойчивости термодинамической системы.

Основные умения.

Самостоятельно работать с рекомендованной литературой; определять понятия из п.1; уметь логично обосновывать с использованием математического аппарата элементы знаний из п.2; по известной статистической сумме (статистическому интегралу) определять внутреннюю энергию системы, свободную энергию Гельмгольца, свободную энергию Гиббса, энтропию, уравнение состояния и т.п.; определять направление эволюции открытой системы при постоянных и , постоянных и , постоянных и .

Внутренняя энергия макроскопической системы.

Основой статистической термодинамики является следующее утверждение: внутренняя энергия макроскопического тела тождественна её средней энергии , вычисленной по законам статистической физики:

(2.2.1)

Подставляя каноническое распределение Гиббса, получаем:

(2.2.2)

Числитель правой части равенства (2.2.2) представляет собой производную от Z по :

.

Поэтому выражение (2.2.2) можно переписать в более компактном виде:

(2.2.3)

Таким образом, для нахождения внутренней энергии системы достаточно знать её статистическую сумму Z .

Второе начало термодинамики и «стрела времени».

Энтропия изолированной системы в неравновесном состоянии.

Если система находится в равновесном состоянии или участвует в квазистатическом процессе, её энтропия с молекулярной точки зрения определяется числом микросостояний, соответствующих данному макросостоянию системы с энергией, равной среднему значению:

.

Энтропия изолированной системы в неравновесном состоянии определяется числом микросостояний, соответствующих данному макросостоянию системы:

причём .

Третий закон термодинамики.

Третий закон термодинамики характеризует свойства термодинамической системы при очень низких температурах (). Пусть наименьшая возможная энергия системы – , а энергия возбуждённых состояний – . При очень низкой температуре средняя энергия теплового движения . Следовательно, энергии теплового движения недостаточно для перехода системы в возбуждённое состояние . Энтропия , где – число состояний системы с энергией (то есть в основном состоянии). Поэтому равно единице, при наличии вырождения, небольшому числу (кратности вырождения). Следовательно энтропию системы, и в том и другом случае можно считать равной нулю ( – очень маленькое число). Поскольку энтропия определяется с точностью до произвольной постоянной иногда это утверждение формулируют так: при , . Значение этой постоянной не зависит от давления, объёма и других параметров, характеризующих состояние системы.

Вопросы для самопроверки.

1. Сформулировать постулаты феноменологической термодинамики.

2. Сформулировать второй принцип термодинамики.

3. В чём заключается мысленный эксперимент Нарликара?

4. Доказать, что энтропия изолированной системы при неравновесных процессах возрастает.

5. Понятие внутренней энергии.

6. При каких условиях (в каких случаях) состояние системы можно рассматривать как равновесное?

7. Какой процесс называется обратимым и необратимым?

8. Что такое термодинамический потенциал?

9. Записать термодинамические функции.

10. Объяснить получение низких температур при адиабатическом размагничивании.

11. Понятие об отрицательной температуре.

12. Запишите термодинамические параметры через сумму состояний.

13. Записать основное термодинамическое равенство системы с переменным числом частиц.

14. Объяснить физический смысл химического потенциала.


Задачи.

1. Доказать основное термодинамическое равенство.

2. Найти выражение термодинамического потенциала свободной энергии F через интеграл состояния Z системы.

3. Найти выражение энтропии S через интеграл состояний Z системы.

4. Найти зависимость энтропия S идеального одноатомного газа из N частиц от энергии Е и объёма V .

5. Вывести основное термодинамическое равенство для системы с переменным числом частиц.

6. Вывести большое каноническое распределение.

7. Вычислить свободную энергию одноатомного идеального газа.

II. Статистическая термодинамика.

Основные понятия

Квазистатический процесс; нулевой постулат феноменологической термодинамики; первый постулат феноменологической термодинамики; второй постулат феноменологической термодинамики; третий постулат феноменологической термодинамики; понятие внутренней энергии; функция состояния; функция процесса; основное термодинамическое равенство; понятие энтропии для изолированной неравновесной системы; понятие локальной неустойчивости фазовых траекторий (траекторий частиц); системы с перемешиванием; обратимый процесс; необратимый процесс; термодинамический потенциал; свободная энергия Гельмгольца; свободная энергия Гиббса; соотношения Максвелла; обобщённые координаты и обобщённые силы; принципы экстремума в термодинамике; принцип Ле-Шателье-Брауна.

Методы Образование Об этом сайте Библиотека Мат. форумы

Библиотека > Книги по физике > Статистическая физика

Статистическая физика

  • Айзеншиц Р. Статистическая теория необратимых процессов. М.: Изд. Иностр. лит., 1963 (djvu)
  • Ансельм А.И. Основы статистической физики и термодинамики. М.: Наука, 1973 (djvu)
  • Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977 (djvu)
  • Базаров И.П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. Избранные труды по статистической физике. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. (мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высш. шк., 1975 (djvu)
  • Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматлит, 1961 (djvu, 2.61Mb)
  • Васильев А.М. Введение в статистическую физику. М.: Высш. школа, 1980 (djvu)
  • Власов А.А. Нелокальная статистическая механика. М.: Наука, 1978 (djvu)
  • Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946 (djvu)
  • Гуров К.П. Основания кинетической теории. Метод Н.Н. Боголюбова. М.: Наука, 1966 (djvu)
  • Заславский Г.М. Статистическая необратимость в нелинейных системах. М.: Наука, 1970 (djvu)
  • Захаров А.Ю. Решёточные модели статистической физики. Великий Новгород: НовГУ, 2006 (pdf)
  • Захаров А.Ю. Функциональные методы в классической статистической физике. Великий Новгород: НовГУ, 2006 (pdf)
  • Иос Г. Курс теоретической физики. Часть 2. Термодинамика. Статистическая физика. Квантовая теория. Ядерная физика. М.: Просвещение, 1964 (djvu)
  • Исихара А. Статистическая физика. М.: Мир, 1973 (djvu)
  • Каданов Л., Бейм Г. Квантовая статистическая механика. Методы функций Грина в теории равновесных и неравновесных процессов. М.: Мир, 1964 (djvu)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu)
  • Киттелъ Ч. Элементарная статистическая физика. М.: ИЛ, 1960 (djvu)
  • Киттель Ч. Статистическая термодинамика. М: Наука, 1977 (djvu)
  • Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. Москва-Ижевск: Институт компьютерных исследований, 2002 (djvu)
  • Компанеец А.С. Законы физической статистики. Ударные волны. Сверхплотное вещество. М.: Наука, 1976 (djvu)
  • Компанеец А.С. Курс теоретической физики. Том 2. Статистические законы. М.: Просвещение, 1975 (djvu)
  • Коткин Г.Л. Лекции по статистической физике, НГУ (pdf)
  • Крылов Н.С. Работы по обоснованию статистической физики. М.-Л.: Из-во АН СССР, 1950 (djvu)
  • Кубо Р. Статистическая механика. М.: Мир, 1967 (djvu)
  • Ландсберг П. (ред.) Задачи по термодинамике и статистической физике. М.: Мир, 1974 (djvu)
  • Левич В.Г. Введение в статистическую физику (2-е изд.) М.: ГИТТЛ, 1954 (djvu)
  • Либов Р. Введение в теорию кинетических уравнений. М.: Мир, 1974 (djvu)
  • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-11. Гиббсовсиие состояния в статистической физике. Сборник статей. М.: Мир, 1978 (djvu)
  • Ноздрев В.Ф., Сенкевич А.А. Курс статистической физики. М.: Высш. школа, 1965 (djvu)
  • Пригожин И. Неравновесная статистическая механика. М.: Мир, 1964 (djvu)
  • Радушкевич Л.В. Курс статистической физики (2-е изд.) М.: Просвещение, 1966 (djvu)
  • Рейф Ф. Берклеевский курс физики. Том 5. Статистическая физика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика статистическая физика и кинетика (2-е изд.). М.: Наука, 1977 (djvu)
  • Рюэль Д. Статистическая механика. М.: Мир, 1971 (djvu)
  • Савуков В.В. Уточнение аксиоматических принципов статистической физики. СПб.: Балт. гос. техн. унив. "Военмех", 2006

В результате изучения материала главы 9 студент должен: знать основные постулаты статистической термодинамики; уметь рассчитывать суммы по состояниям и знать их свойства; пользоваться терминами и определениями, приведенными в главе;

владеть специальной терминологией; навыками расчета термодинамических функций идеальных газов статистическими методами.

Основные постулаты статистической термодинамики

Термодинамический метод не применим к системам, состоящих из малого числа молекул, так как в таких системах исчезает различие между теплотой и работой. Одновременно исчезает однозначность направления процесса:

Для очень малого числа молекул оба направления процесса становятся равноценными. Для изолированной системы - приращение энтропии или равно приведенной теплоте (для равновесно-обратимых процессов), или больше ее (для неравновесных). Такая дуалистичность энтропии может быть объяснена с точки зрения упорядоченности - неупорядоченности движения или состояния составляющих систему частиц; следовательно, качественно энтропию можно рассматривать как меру неупорядоченности молекулярного состояния системы. Эти качественные представления количественно развиваются статистической термодинамикой. Статистическая термодинамика является частью более общего раздела науки - статистической механики.

Основные принципы статистической механики были развиты в конце XIX в. в трудах Л. Больцмана и Дж. Гиббса.

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. Макроскопический подход используется классической термодинамикой, где состояния систем, содержащих единственное чистое вещество, определяется в общем случае тремя независимыми переменными: Т (температура), V (объем), N (число частиц). Однако, с микроскопической точки зрения, система, содержащая 1 моль вещества, включает 6,02 10 23 молекул. Кроме того, в первом подходе подробно характеризуется микросостояние системы,

например координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): ЗN координат и ЗN проекций импульса.

Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле - бесконечно много) микросостояний (рис. 9.1).

Рис. 9.1.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояиий, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее но всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам р(р, q , t), которая определяется следующим образом: р(p, q, t)dpdq - это вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки (р , q) в момент времени t.

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостояпии.

Из определения следуют элементарные свойства функции распределения:

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f(p, q) по ансамблю:

Например, внутренняя энергия - это среднее значение функции Гамильтона Н(р, q):

(9.4)

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения , которая удовлетворяет условиям (9.1) и (9.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: р = р(p, q). Явный вид функции распределения зависит от типа ансамбля. Различают три основных тина ансамблей:

где k = 1,38 10 -23 Дж/К - постоянная Больцмана. Значение константы в выражении (9.6) определяется условием нормировки.

Частным случаем канонического распределения (9.6) является распределение Максвелла по скоростям ь которое справедливо для газов:

(9.7)

где m - масса молекулы газа. Выражение р(v)dv описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d&. Максимум функции (9.7) дает наиболее вероятную скорость молекул, а интеграл

среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона Н(р, q) используют оператор Гамильтона Н, а вместо функции распределения - оператор матрицы плотности р:

(9.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в і-м энергетическом состоянии и имеет энергию Е{.

(9.10)

Значение константы определяется условием нормировки:

(9.11)

Знаменатель этого выражения называют суммой по состояниям. Он имеет ключевое значение для статистической оценки термодинамических свойств системы. Из выражений (9.10) и (9.11) можно найти число частиц N jf имеющих энергию

(9.12)

где N - общее число частиц. Распределение частиц (9.12) по уровням энергии называют распределением Больцмана, а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией £, то их объединяют в одну группу путем суммирования больцмановских множителей:

(9.13)

где gj - число уровней с энергией Ej , или статистический вес.

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

(9.14)

3) большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой Т, а равновесие по числу частиц - химическим потенциалом р. Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА,

раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии С. т. позволяет вычислять , записывать уравнения состояния, условия фазовых и хим. равновесий. Неравновесная С. т. дает обоснование соотношений термодинамики необратимых процессов (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. С. т. устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы С. т. используются во всех направлениях совр. теоретич. химии.

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией Eс окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N(параметры состояния V, Т, N ).Большой канонич. ансамбль Гиббса используется для описания открытых систем, находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V).Параметры состояния такой системы-V, Ти mЧ химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P(параметры состояния Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты i и сопряженные им импульсы

(i =1,2,..., М) системы с Мстепенями свободы. Для системы, состоящей из Nатомов, i и

соответствуют декартовой координате и компоненте импульса (a = х, у, z ) нек-рого атома jи М = 3N. Совокупность координат и импульсов обозначаются qи pсоответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q ),к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т. к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний.

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микросостояния ( р, q ) в элементе объема dГ фазового пространства. Вероятность пребывания Nчастиц в бесконечно малом объеме фазового пространства равна:

где dГ N -> элемент фазового объема системы в единицах h 3N , h -постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки тf(p, q )dГ N => 1, т. к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , нахождения системы из Nчастиц в квантовом состоянии, задаваемом набором квантовых чисел i, с энергией при условии нормировки

Среднее значение в момент времени т (т. е. по бесконечно малому интервалу времени от т до т + )любой физ. величины А( р, q ), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т. ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от Ч, до +,. Состояние термодинамич. равновесия системы следует рассматривать как предел т:,. Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Еравновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q ) = A d,

где d-дельта-ф-ция Дирака, Н( р,q )-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная Аопределяется из условия нормировки ф-ции f(p, q ).Для квантовых систем при точности задания квантового состояния, равной величине DE, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w() = -1 , если Е E + DE, и w() = 0, если и DE. Величина g(E, N, V )-т. наз. статистич. вес, равный числу квантовых состояний в энергетич. слое DE. Важное соотношение С. т.-связь энтропии системы со статистич. весом:

S(E, N, V ) = k lng(E, N, V ),где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех Nчастиц или значениями , имеет вид: f(p, q ) = exp {/kT }; w i,N = exp[(F - E i,N )/kT ], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

F = -kT ln

где статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N > или f(p, q ):


Z N = тexp[-H(р, q)/kT ]dpdq /()

(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q ) и статистич. сумма X, определяемая из условия нормировки, имеют вид:

где W-термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N).В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий. Статистич. суммы и Qпозволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT 2 (9ln ) V , > энтальпию H = RT 2 (9ln , энтропию S = Rln + RT (9ln /9T) V = = Rln Q + RT (9ln , теплоемкость при постоянном объеме С V = 2RT (9ln 2 (ln /9T 2) V , > теплоемкость при постоянном давлении С Р => 2RT (9ln 2 (9 2 ln /9T 2) P > и т. д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний gв данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия изолир. системы имеет максимально возможное значение при заданных внеш. условиях ( Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии, согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой (см. Тепловая теорема ).Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т. к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов, если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q ) для Nчастиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловленных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином.

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах Р= h/2p. Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах, металлах и полупроводниках, атомные ядра с нечетным атомным номером, атомы с нечетной разностью атомного номера и числа электронов, квазичастицы (напр., электроны и дырки в твердых телах) и т. д. Данная статистика была предложена Э. Ферми в 1926; в том же году П. Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т. е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип ). Среднее число частиц идеального газа фермионов, находящихся в состоянии с энергией , определяется ф-цией распределения Ферми-Дирака:

={1+exp[( -m)/kT ]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, Р, 2Р, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа, рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т. д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках. Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т. е. в одном состоянии может находиться любое число частиц. Среднее число частиц идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

={exp[( -m)/kT ]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей, нельзя выбрать объем меньший, чем h 3 . Среднее число частиц идеального газа, находящихся в состоянии с энергией описывается ф-цией распределения Больцмана:

=exp[(m)/kT ].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам pи координатам r частиц идеального газа имеет вид: f 1 (p,r) = Aехр{ - [р 2 /2m + U(r)]/kT }. Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная Аопределяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT ],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r(n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение молекул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках, а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от до + (i= x, у, z ),определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов, но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе. Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

Сумма по состояниям молекулы. Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:

где Е i - > энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов, атомов и групп атомов в молекуле, а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА" в других словарях:

    - (равновесная статистическая термодинамика) раздел статистической физики, посвящённый обоснованию законов термодинамики равновесных процессов (на основе статистич. механикиДж. У. Гиббса, J. W. Gibbs) и вычислениям термодинамич. характеристик физ … Физическая энциклопедия

    Раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ … Большой Энциклопедический словарь

    Раздел статистической физики, посвященный теоретическому определению термодинамических характеристик физических систем (уравнений состояния, термодинамических потенциалов и др.) на основе законов движения и взаимодействия частиц, составляющих эти … Энциклопедический словарь

    статистическая термодинамика - statistinė termodinamika statusas T sritis chemija apibrėžtis Termodinamika, daugiadalelėms sistemoms naudojanti statistinės mechanikos principus. atitikmenys: angl. statistical thermodynamics rus. статистическая термодинамика … Chemijos terminų aiškinamasis žodynas

    статистическая термодинамика - statistinė termodinamika statusas T sritis fizika atitikmenys: angl. statistical thermodynamics vok. statistische Thermodynamik, f rus. статистическая термодинамика, f pranc. thermodynamique statistique, f … Fizikos terminų žodynas

Статистическая термодинамика – раздел статистической физики, формулирующий законы, связывающие молекулярные свойства веществ с измеряемыми на опыте ТД величинами.

СТД посвящена обоснованию законов термодинамики равновесных систем и вычислению ТД функций по молекулярным постоянным. Основу СТД составляют гипотезы и постулаты.

В отличие от механики, в СТЛ рассматриваются средние значения координат и импульсов и вероятности появления их значений. Термодинамические свойства макроскопической системы рассматриваются как средние значения случайных величин или как характеристики плотности вероятности.

Различают классическую СТД (Максвелл, Больцман), квантовую (Ферми, Дирак, Бозе, Эйнштейн).

Основная гипотеза СТД: существует однозначная связь молекулярных свойств частиц, составляющих систему, и макроскопических свойств системы.

Ансамбль – большое, почти бесконечное число аналогичных ТД систем, находящихся в различных микросостояниях. У ансамбля с постоянной энергией все микросостояния равновероятны. Средние значения физически наблюдаемой величины за большой промежуток времени равно среднему значению по ансамблю.

§ 1. Микро- и макросостояния. Термодинамическая вероятность (статичтический вес) и энтропия. Формула Больцмана. Статистический характер второго закона ТД

Для описания макросостояния указывают небольшое число переменны (часто 2). Для описания микросостояния применяют описание конкретных частиц, для каждой из которых вводится шесть переменных.

Для графического изображения микросостояния удобно пользоваться фазовым пространством. Различают - фазовое пространство (молекулы) и Г-фазовое пространство (газ).

Для подсчёта числа микросостояний Больцман использовал метод ячеек, т.е. фазовый объём разбивается на ячейки, причем величина ячеек достаточно большая, чтобы поместилось несколько частиц, но маленькая по сравнению с целым объёмом.

Если полагать, что одна ячейка соответствует одному микросостоянию, то, если весь объём поделить на объём ячейки, получим число микросостояний.

Примем, что объём фазового пространства разбит на три ячейки. Общее число частиц в системе – девять. Пусть одно макросостояние: 7+1+1, второе: 5+2+2, третье: 3+3+3. Посчитаем число микросостояний, которыми может быть реализовано каждое макросостояние. Это число способов равно . В статистике Больцмана частицы считаются различимыми, т.е. обмен частиц между ячейками даёт новое микросостояние, но макросостояние остается тем же.

Наибольшее число микросостояний даёт система, в которой частицы равномерно распределены по всему объёму. Самое неустойчивое состояние соответствует накоплению частиц в одной части системы.


Посчитаем число микросостояний, когда число Авогадро распределено по двум ячейкам:

Применим формулу Стирлинга:

Если одна частица перескочит в чужую ячейку, получим отличие на .

Возьмем систему, в которой произошёл переход х частиц. Пусть мы хотим, чтобы . Расчет показывает, что х = 10 12 .

По мере перехода системы в равновесное состояние термодинамическая вероятность сильно растёт, энтропия тоже растёт. Следовательно,

Найдём вид этой функции, для этого возьмем систему из двух ячеек. В первом случае NA+0, во втором 0,5 + 0,5. Температура постоянна. Переход от первого состояния ко второму есть изотермическое расширение газа.

Согласно формуле Больцмана,

Так получается постоянная Больцмана. Теперь получим формулу Больцмана.

Возьмем две системы

Из двух систем образуем третью, тогда энтропия новой системы будет равняться:

Вероятность двух независимых систем перемножается:

Функция логарифмическая:

Но энтропия – величина размерная, нужен коэффициент пропорциональности. А это и есть константа Больцмана.

Вот здесь скользкий переход и вывод, что максимум энтропии в точке равновесия – закон не абсолютный, а статистический. Как видно, чем меньше частиц, тем реже выполняется второй закон термодинамики.

§ 2. Распределение молекул по энергии. Закон Больцмана

Система из Н частиц, . Как молекулы распрделены по энергии? Какое число молекул обладает энергией ?

Энтропия в состоянии равновесия имеет максимальное значение:

А теперь найдем что-то ещё:

Найдём дифференциалы:

В уравнении (2) не все количества независимы

Для того, чтобы избавиться от зависимых переменных, используем метод неопределенных множителей Лагранжа:

Подбираются так, чтобы коэффициенты при зависимых переменных были равны нулю.

Тогда остальные члены в сумме независимы. Окончательно получится, что

Потенцируем это уравнение:

Просуммируем:

Подставим в (3):

Избавимся от ещё одного множителя. Ур-е (6) логарифмируем, умножаем на и суммируем:

Неопределенный множитель Лагранжа стал определенным.

Окончательно, закон Больцмана запишется:

Подставим в (8) значение

Фактор Больцмана

Иногда распределение Больцмана записывают и так:

Соответственно, при температуре, близкой к абсолютному нулю, , т.е. нет молекул на возбужденных уровнях. При температуре, стремящейся к бесконечности, распределение по всем уровнями одинаково.

– сумма по состояниям


§ 3. Сумма по состояниям молекулы и её связь с термодинамическими свойствами

Выясним, какими свойствами обладает сумма по состояниям молекулы. Во-первых, это безразмерная величина, а её значение определяется температурой, количеством частиц и объёмом системы. Также она зависит от массы молекулы и её формы движения.

Далее, сумма по состояниям неабсолютная величина, она определена с точностью до постоянного множителя. Её величина зависит от уровня отсчёта энергии системы. Часто за этот уровень принимается температура абсолютного нуля и состояние молекулы с минимальными квантовыми числами.

Сумма по состояниям – монотонно увеличивающаяся функция температуры:

С ростом энергий сумма по состояниям увеличивается.

Сумма по состояниям молекулы обладает свойством мультипликативности. Энергию молекулы можно представить суммой поступательной и внутримолекулярной энергий. Тогда сумма по состояниям запишется так:

Можно ещё и так:

На возбуждение электронных уровней необходима высокая температура. При сравнительно невысоких температурах вклад электронных колебаний близок к нулю.

Нулевой уровень электронного состояния

Это вот всё называется приближением Борна – Оппенгеймера.

Предположим, что , тогда сумму можно заменить так:

Если остальные тоже между собой практически одинаковы, то:

Вырожденность уровней

Такая форма записи называется суммой по энергетическим уровням молекулы.

Сумма по состояниям связана с термодинамическими свойствами системы.

Возьмем производную по температуре:

Получили выражение для энтропии

Энергия Гельмгольца

Найдем давление:

Энтальпия и энергия Гиббса:

Осталась теплоемкость:

Во-первых, все величины – это приращение к нулевой энергии, во-вторых, все уравнения выполняются для систем, где частицы можно считать различимыми. В идеальном газе молекулы неразличимы.

§ 4. Каноническое распределение Гиббса

Гиббс предложил метод статистических, или термодинамических, ансамблей. Ансамбль – это большое, стремящееся к бесконечности, число аналогичных термодинамических систем, находящихся в различных микросостояниях. Микроканонический ансамбль характеризуется постонством . Канонический ансамбль имеет постоянные . Распределение Больцмана было выведено для микроканонического ансамбля, перейдём к каноническому.

Какова вероятность одного микросостояния в системе в термостате?

Гиббс ввёл понятие статистического ансамбля. Представим большой термостат, поместим в него ансамбль – одинаковые системы в различных микросостояниях. Пусть М – число систем в ансамбле. В состоянии i находятся систем.

В каноническом ансамбле, поскольку могут реализоваться состояния с различной энергией, следует ожидать, что вероятности будут зависеть от уровня энергии, которому они принадлежат.

Пусть имеется состояние, где энергия системы и её энтропия равны . Этой системе соответствует микросостояний.

Энергия Гельмгольца всего ансамбля постоянна.

Если внутреннюю энергию приравнять к энергии , то

Тогда вероятность одного состояния равна

Таким образом, вероятности, относящиеся к различным энергиям, зависят от энергии системы, а она может быть различной.

– каноническое распределение Гиббса

– вероятность макросостояния

вероятн.

§ 5. Сумма по состояниям системы и её связь с термодинамическими функциями

Сумма по состояниям системы

Функция состояния системы обладает свойством мультипликативности. Если энергию системы представить в виде:

Оказалось, что эта связь действует для системы локализованных частиц. Число микросостояний для нелокализованных частиц будет гораздо меньше. Тогда:

Пользуясь свойством мультипликативности, получим:

§ 6. Поступательная сумма по состояниям.
ТД свойства одноатомного идеального газа

Будем рассматривать одноатомный идеальный газ. Молекула считается точкой, которая обладает массой и способностью перемещаться в пространстве. Энергия такой частицы равна:

Такое движение имеет три степени свободы, поэтому представим эту энергию в виде трех составляющих. Рассмотрим движение вдоль координаты х .

Из квантовой механики:

Постулируется также.